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1 Introduction

The original implementation of particle decays in the Muon1 tracking code only admitted two-
body processes. These are easily dealt with by assuming the rest frame of the parent particle
and producing two decay products with equal and opposite isotropically-selected momenta and
magnitude such as to conserve energy. The problem of an n-body decay subtracts four con-
straints from the 3n degrees of freedom of the decay products: three for overall conservation of
momentum and one for energy. The final states can therefore be found on a (3n−4)-dimensional
manifold in the multi-particle phase space. This is two-dimensional for two-body decays (and
can be made into a sphere by the method and symmetry argument above), but even for three-
body decays it is already five-dimensional and rotational symmetry can remove at most three
of these.

Faced with this problem of a complicated surface to generate the distribution on, a Monte
Carlo routine that covers the right surface with points (at some known density) is obtained first
and then the density is corrected afterwards by rejecting a calculated proportion of them and
re-running the original routine as necessary (this is known as rejection sampling). Formally, the
first routine generates the primal probability density F (pi) on the feasible manifold, then any
other desired distribution f(pi) can be derived from this by only accepting each primal point
with probability ∝ f(pi)/F (pi). Note that this should not be larger than 1, so the ratio must
be bounded above and scaled accordingly.

2 The Probability Density

From the 2004 Particle Physics Booklet, section 38.4, the probability of a particle with 4-
momentum P decaying into n particles of 4-momenta p1, p2 . . . pn is governed by

P ∝ δ4(P −
n∑

i=1

pi)
n∏

i=1

d3pi

Ei

= δ(E −
n∑

i=1

Ei)δ3(P−
n∑

i=1

pi)
n∏

i=1

d3pi

Ei
.

Here and elsewhere units are such that c = 1.
The delta functions can be multiplied into the main coefficient using the following rule, where

f is a function with one root f(a) = 0:

δ(f(x))g(x) =
g(a)
|f ′(a)|

δ(x− a).
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Applying this three times, considering the probability expression as a function of px
n, py

n and
pz

n in turn, reduces it to:

d3nP
d3p1d3p2 . . .d3pn

∝

[
δ(E −

n∑
i=1

Ei)
n∏

i=1

1
Ei

]
δ3

(
pn − (P−

n−1∑
i=1

pi)

)
,

which when integrated over pn gives

d3n−3P
d3p1d3p2 . . .d3pn−1

∝ δ(E −
n∑

i=1

Ei)
n∏

i=1

1
Ei

,

after which the substitution pn = P−
∑n−1

i=1 pi should be used to determine the last momentum
and En.

This needs to be integrated one more time to remove the last delta function, so a degree of
freedom will be taken from pn−1. Let p∗ = P −

∑n−2
i=1 pi so that pn−1 + pn = p∗ to conserve

3-momentum. Now perform a Lorentz transformation into a primed frame where p′
∗ = 0, so

that p′
n−1 = −p′

n = pp̂. Integrating over p ≥ 0 will remove the delta function, leaving the two
degrees of freedom in p̂ parameterising the remaining freedom of these last two momenta.

Starting with the expression written in the primed frame:

d3n−3P
d3p′

1d3p′
2 . . .d3p′

n−1

∝ δ(E′ −
n∑

i=1

E′
i)

n∏
i=1

1
E′

i

...change p′
1 through p′

n−2 back to the original frame using d3p′
i = (E′

i/Ei)d3pi:

d3n−3P
d3p1d3p2 . . .d3pn−2d3p′

n−1

∝ δ(E′ −
n∑

i=1

E′
i)

1
E′

n−1E
′
n

n−2∏
i=1

1
Ei

...and then use the substitution, which implies d3p′
n−1 = p2dpd2p̂, to get:

d3n−4P
d3p1d3p2 . . .d3pn−2d2p̂

∝ δ(E′ −
n∑

i=1

E′
i)

p2dp

E′
n−1E

′
n

n−2∏
i=1

1
Ei

.

Now that varying p is the concern, a “constant” part may be removed from the argument of
the delta function

δ(E′ −
n∑

i=1

E′
i) = δ(E′

∗ − (E′
n−1 + E′

n)),

where E′
∗ = E′ −

∑n−2
i=1 E′

i. The modulus of the derivative of this argument:

d
dp

(E′
n−1 + E′

n) =
d
dp

(√
p2 + m2

n−1 +
√

p2 + m2
n

)
=

p√
p2 + m2

n−1

+
p√

p2 + m2
n

= p

(
1

E′
n−1

+
1

E′
n

)
= p

E′
n−1 + E′

n

E′
n−1E

′
n

,

...must be divided out when the argument of the delta function is linearised:

d3n−4P
d3p1d3p2 . . .d3pn−2d2p̂

∝ δ(p− p0)
pdp

E′
n−1 + E′

n

n−2∏
i=1

1
Ei

=
p

E′
n−1 + E′

n

n−2∏
i=1

1
Ei

∣∣∣∣∣
p=p0

,
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with p0 being the value of p ≥ 0 for which energy is conserved.
p0 is the root of the delta function, so

E′
∗ = E′

n−1 + E′
n =

√
p2
0 + m2

n−1 +
√

p2
0 + m2

n,

which is of the form

Q =
√

R +
√

S

⇒ Q−
√

R =
√

S

⇒ Q2 − 2Q
√

R + R = S (∗)
⇒ Q2 + R− S = 2Q

√
R

⇒ (Q2 + R− S)2 = 4Q2R. (∗)

This may be used on the expression now, but note that in the squaring operations marked (*) the
implication goes only one way, so any value of p0 derived using the following must be checked
back to make sure the squaring operation did not equate things that originally had opposite
signs! The squared-up expression is

(E′
∗
2 + m2

n−1 −m2
n)2 = 4E′

∗
2(p2

0 + m2
n−1),

giving the root explicitly as

p0 =

√
(E′

∗
2 + m2

n−1 −m2
n)2

4E′
∗
2 −m2

n−1.

3 The Primal Distribution

The previous section gave the probability distribution with respect to an element of the mo-
menta p1 . . .pn−2 and the unit direction p̂ governing the last two particles. Thus if a uniform
distribution is used for the n − 2 momenta and an isotropic one for p̂ in the primal distribu-
tion, the (3n − 4)-dimensional probability density will be exactly proportional to the selection
probability.

Generating an isotropic p̂ is easy; what is not so obvious is how to choose a ‘domain’ in which
the pi are uniformly spread. As |pi| ≤ Ei ≤ E = m0 (i.e. the mass of the parent particle), there
is at least a crude limit on how large the momenta can be. Here note that many of these choices
for p1 . . .pn−2 miss the manifold entirely, a fact which becomes apparent when attempting to
enforce conservation of energy leads to particles with negative energy, or taking square-roots
of negative quantities. In these cases, the sample should be rejected, so in effect there are two
levels of rejection sampling, one to get onto the manifold and a second to adjust the density.
The first level does not affect the relative proportions between any of the probabilities within
the manifold, so has no adverse consequences other than wasted CPU time.

The final ingredient for a workable implementation of rejection sampling is an upper bound
on the probability density derived in the previous section, so that it may be divided out to give
selection probabilities of no more than 1. By noting that Ei ≥ mi ⇒ 1/Ei ≤ 1/mi, one obtains

p

E′
n−1 + E′

n

n−2∏
i=1

1
Ei

≤ p

E′
n−1 + E′

n

n−2∏
i=1

1
mi

,

leaving only the front term to deal with. Remembering that |p′
n−1| = |p′

n| = p, it follows that
E′

n−1 ≥ p and E′
n ≥ p so that the denominator is at least 2p, resulting in

p

E′
n−1 + E′

n

n−2∏
i=1

1
Ei

≤ 1
2

n−2∏
i=1

1
mi

.
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The probability to use is therefore

P1 =
2p

E′
n−1 + E′

n

n−2∏
i=1

mi

Ei
.

This is workable for several cases, but when there are particles of small mass (such as
electrons or neutrinos) in the decay products, the ratio mi/Ei = 1/γi becomes very small when
these acquire a significant fraction of the mass-energy of the heavier parent particle. The formula
does not select any samples at all when photons are produced! The problem arises from the
choice of a uniform momentum distribution for each of the first n− 2 particles not being a very
good ‘fit’ to the 1/Ei in the probability density, particularly when the energy is dominated by
momentum rather than rest mass.

With this in mind, the bound can be modified to use the fact that Ei =
√

p2
i + m2

i ≥
max{|pi|,mi} so 1/Ei ≤ min{1/|pi|, 1/mi}. However, this is no longer a constant with re-
spect to pi, so to have it divided out, a primal distribution must be generated with F (pi) ∝
min{1/|pi|, 1/mi}. This is uniform for |pi| ≤ mi, so retaining the previous cutoff of |pi| ≤ m0,
the ratio of the uniform part to the outer part is

4
3
πm3

i

1
mi

:
∫ m0

mi

4π|pi|2
d|pi|
|pi|

=
m2

i

3
:
m2

0 −m2
i

2
.

Since 2|pi|d|pi| = d|pi|2, the outer part corresponds to choosing |pi|2 uniformly on [m2
i ,m

2
0].

Generating events from these two parts in the ratio above, for each i up to n − 2, gives the
required primal distribution.

Now dividing out min{1/|pi|, 1/mi} instead of just 1/mi gives the new selection probability
as

P2 =
2p

E′
n−1 + E′

n

n−2∏
i=1

max{|pi|,mi}
Ei

,

which is clearly better conditioned, as terms in the product part never fall below 1/
√

2.

4 Results and Efficiency

The two versions of the algorithm described above were implemented and tested on a variety of
decay channels for the kaon: the results are shown in table 4. Note that for 3-body and higher
decays, there is sometimes a choice of which particles to associate the ‘special’ momenta pn−1

and pn with. This affects the speed of the algorithms, particularly the first version, so these
possibilities are broken down individually in the cases where the particles have different mass.

A standard plot that can be used to test the correctness of the routine is the Dalitz plot of
m2

12 against m2
23, where m2

ij = (mi + mj)2 − |pi + pj |2. The correct phase-space distribution
ought to be uniformly spread on the allowed region when projected into this plane. Such a plot
is shown in figure 4 generated from many runs of the P2-based version of the algorithm.
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Figure 1: Dalitz plot for the K+ → π+π+π− decay, showing uniform coverage of the allowed
area.
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Table 1: Mean number of primal samples required to generate one valid decay. Figures are
an average over 10000 successful decays except where another number of decays is indicated in
parentheses. ‘inf’ denotes that it was infeasible to run the algorithm, as no valid decays were
generated after 107 samples.

Decay (special pair) Using P1 Using P2

K+ → e+νe 1 1
K+ → µ+νµ 1.0483 1.0485
K+ → π0e+νe

(π0, e+) inf 6.7499
(π0, νe) 4123.71 (2425) 6.5441
(e+, νe) 15.7419 6.4251

K+ → π+π0π0

(π+, π0) 151.285 60.5826
(π0, π0) 146.47 61.5364

K+ → π+π+π− 184.181 75.1907
K+ → π+π−e+νe

(π+, π−) inf 666.969
(π, e+) inf 652.936
(π, νe) 8× 105 (25) 654.098
(e+, νe) 3746.72 (2669) 636.432
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