Fringe Fields for VFFAG Magnets with Edge Angles

Stephen Brooks

November 8, 2011

1 Conventions, Assumptions and Definitions

The beam is travelling in the $+z$ direction and the machine closed orbit shifts in the $+y$ direction ('upwards') with increasing energy. The standard hard-edged scaling VFFAG field is $B_{y}=B_{0} \mathrm{e}^{k y}$ within the magnet body on the $x=0$ mid-plane [1], where k has units of inverse length.

For a skew magnet, the edge angle is parametrised by $\tau=\tan \theta$, where θ is the angle between the magnet edge and the y axis. Defining $\zeta=z-\tau y$, the function $f(\zeta)$ determines the field fall off at both ends of the magnet, approaching $f=1$ within the magnet and $f=0$ outside.

2 Fringe Field Issues

A standard Maxwellian extrapolation [2] away from the $x=0$ plane is insufficient because it only satisfies the three Maxwell equations involving ∂_{x} and there is also the curl condition $(\nabla \times \mathbf{B})_{x}=$ $\partial_{y} B_{z}-\partial_{z} B_{y}=0$ to satisfy within the plane itself. This is not a problem for conventional dipoles where only B_{x} (the perpendicular field component) is nonzero on the midplane.

2.1 A General Solution for Zero Edge Angle

Given a desired B_{y}, the curl condition can be enforced explicitly via

$$
\partial_{y} B_{z}-\partial_{z} B_{y}=0 \quad \Rightarrow \quad \partial_{y} B_{z}=\partial_{z} B_{y} \quad \Rightarrow \quad B_{z}=\int^{y} \partial_{z} B_{y} \mathrm{~d} y
$$

where the lower y-limit of the integral can be chosen as desired for each value of z. If the goal is to have $B_{y}=f(z)$, the field components

$$
B_{y}=f(z), \quad B_{z}=y f^{\prime}(z)
$$

satsify $\partial_{y} B_{z}=\partial_{z} B_{y}=f^{\prime}(z)$. For the more general situation $B_{y}=g(y, z)$, the field

$$
B_{y}=g(y, z), \quad B_{z}=\int^{y} \partial_{z} g(y, z) \mathrm{d} y
$$

satisfies $\partial_{y} B_{z}=\partial_{z} B_{y}=\partial_{z} g(y, z)$.

2.2 Extension to Angled Fringe Fields

Although the solution in the previous section can be used with $g(y, z)$ equal to the desired slanted field $f(\zeta)$, this produces fringe fields that propagate vertically rather than parallel to the magnet edge. However, consider the field

$$
B_{y}=f(\zeta)-\tau y f^{\prime}(\zeta), \quad B_{z}=y f^{\prime}(\zeta)
$$

Since $\partial_{y} f(\zeta)=-\tau f^{\prime}(\zeta)$ and $\partial_{z} f(\zeta)=f^{\prime}(\zeta)$, the curl condition is satisfied with $\partial_{y} B_{z}=\partial_{z} B_{y}=$ $f^{\prime}(\zeta)-\tau y f^{\prime \prime}(\zeta)$. Can this be generalised in an analogous way to the zero edge angle case, by replacing a multiplication by y with an integral in y ? For a function $g(y, \zeta)$ this would suggest the field

$$
B_{y}=g(y, \zeta)-\tau \int^{y} \partial_{\zeta} g(y, \zeta) \mathrm{d} y, \quad B_{z}=\int^{y} \partial_{\zeta} g(y, \zeta) \mathrm{d} y
$$

Checking the derivatives gives

$$
\partial_{y} B_{z}=\partial_{z} B_{y}=\partial_{\zeta} g(y, \zeta)-\tau \int^{y} \partial_{\zeta}^{2} g(y, \zeta) \mathrm{d} y
$$

noting firstly that ζ depends on y, so $g(y, \zeta)$ depends on y twice and secondly that $\partial_{z}=\partial_{\zeta}$ since y is held constant in both cases. The lower limit of the B_{z} integral is still free to be chosen, this time as a function of ζ and its evaluation can be reused in $B_{y}=g(y, \zeta)-\tau B_{z}$.

2.3 Scalar Potential Formulation

The fringe field issue is caused by having to satisfy $\nabla \times \mathbf{B}=\mathbf{0}$ in free space. However if $\mathbf{B}=\nabla \phi$, the curl of a gradient is zero so this equation always holds. The four fields given in this section have the scalar potentials below (valid only on the $x=0$ plane).

$$
\begin{aligned}
\phi_{f 0} & =y f(z) \\
\phi_{g 0} & =\int^{y} g(y, z) \mathrm{d} y \\
\phi_{f \theta} & =y f(\zeta) \\
\phi_{g \theta} & =\int^{y} g(y, \zeta) \mathrm{d} y
\end{aligned}
$$

3 The Scaling VFFAG Mid-Plane Field

Using the angled fringe field formula with $g(y, \zeta)=B_{0} \mathrm{e}^{k y} f(\zeta)$ yields

$$
B_{z}=\int^{y} B_{0} \mathrm{e}^{k y} f^{\prime}(\zeta) \mathrm{d} y=B_{0} f^{\prime}(\zeta) \frac{\mathrm{e}^{k y}-\mathrm{e}^{k Y(\zeta)}}{k}
$$

where $Y(\zeta)$ is the lower limit of the integral. Because the integral is bounded in the negative y direction (assuming $k>0$), the most elegant choice here is $Y(\zeta)=-\infty$, so that

$$
B_{z}=B_{0} \mathrm{e}^{k y} \frac{f^{\prime}(\zeta)}{k}, \quad B_{y}=B_{0} \mathrm{e}^{k y} f(\zeta)-\tau B_{z}=B_{0} \mathrm{e}^{k y}\left(f(\zeta)-\frac{\tau f^{\prime}(\zeta)}{k}\right)
$$

4 Off-plane Field Expansion

This section adapts the magnetic field expansion used in [2] for the vertical orbit-excursion case. Maxwell's equations in free space, $\nabla \cdot \mathbf{B}=\nabla \times \mathbf{B}=0$, can be rearranged to give

$$
\partial_{x} \mathbf{B}=\left[\begin{array}{ccc}
0 & -\partial_{y} & -\partial_{z} \\
\partial_{y} & 0 & 0 \\
\partial_{z} & 0 & 0
\end{array}\right] \mathbf{B}=\left[\begin{array}{cc}
0 & -\nabla_{y, z}^{T} \\
\nabla_{y, z} & 0
\end{array}\right] \mathbf{B}
$$

from which a Taylor expansion in x yields

$$
\begin{gathered}
B_{x}(x, y, z)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}\left(-\nabla_{y, z}^{2}\right)^{n}\left(-\nabla_{y, z} \cdot \mathbf{B}_{y, z}(0, y, z)\right) \\
\mathbf{B}_{y, z}(x, y, z)=\mathbf{B}_{y, z}(0, y, z)+\sum_{n=1}^{\infty} \frac{x^{2 n}}{(2 n)!} \nabla_{y, z}\left(-\nabla_{y, z}^{2}\right)^{n-1}\left(-\nabla_{y, z} \cdot \mathbf{B}_{y, z}(0, y, z)\right) .
\end{gathered}
$$

Here it has been assumed that $B_{x}(0, y, z)=0$. Since our field has a scalar potential on the midplane, $\mathbf{B}_{y, z}(0, y, z)=\nabla_{y, z} \phi(y, z)$, which simplifies the formulae further:

$$
\begin{aligned}
& B_{x}(x, y, z)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}\left(-\nabla_{y, z}^{2}\right)^{n+1} \phi(y, z) \\
& \mathbf{B}_{y, z}(x, y, z)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \nabla_{y, z}\left(-\nabla_{y, z}^{2}\right)^{n} \phi(y, z)
\end{aligned}
$$

For the VFFAG mid-plane field, $\phi(y, z)=B_{0} \mathrm{e}^{k y} \frac{f(\zeta)}{k}$.

4.1 The Iterated 2D Laplacian

The bulk of the field calculation is now in evaluating $\left(-\nabla_{y, z}^{2}\right)^{n} \phi(y, z)$ from the summands in the previous section. Assuming f and its derivatives are evaluated at ζ unless otherwise stated, it is useful to evaluate

$$
\begin{aligned}
-\nabla_{y, z}^{2}\left(\mathrm{e}^{k y} f^{(n)}\right) & =-\partial_{y} \partial_{y}\left(\mathrm{e}^{k y} f^{(n)}\right)-\partial_{z} \partial_{z}\left(\mathrm{e}^{k y} f^{(n)}\right) \\
& =-\partial_{y}\left(k \mathrm{e}^{k y} f^{(n)}-\tau \mathrm{e}^{k y} f^{(n+1)}\right)-\partial_{z}\left(\mathrm{e}^{k y} f^{(n+1)}\right) \\
& =-\left(k^{2} \mathrm{e}^{k y} f^{(n)}-2 k \tau \mathrm{e}^{k y} f^{(n+1)}+\tau^{2} \mathrm{e}^{k y} f^{(n+2)}\right)-\mathrm{e}^{k y} f^{(n+2)} \\
& =\mathrm{e}^{k y}\left(-k^{2} f^{(n)}+2 k \tau f^{(n+1)}-\left(1+\tau^{2}\right) f^{(n+2)}\right)
\end{aligned}
$$

Therefore the general form is

$$
\left(-\nabla_{y, z}^{2}\right)^{n} \phi(y, z)=B_{0} \mathrm{e}^{k y} \sum_{j=0}^{2 n} a_{n j} f^{(j)}
$$

and the recurrence relation is

$$
a_{n+1, j}=-k^{2} a_{n j}+2 k \tau a_{n, j-1}-\left(1+\tau^{2}\right) a_{n, j-2}
$$

where the definition is made that $a_{n,-1}=a_{n,-2}=0$. Initially, $a_{00}=\frac{1}{k}$ and $a_{0 j}=0$ elsewhere.

4.2 Field Evaluation Formulae for General $f(\zeta)$

Noting that

$$
\nabla_{y, z}\left(-\nabla_{y, z}^{2}\right)^{n} \phi(y, z)=B_{0} \mathrm{e}^{k y} \sum_{j=0}^{2 n} a_{n j}\left[\begin{array}{c}
k f^{(j)}-\tau f^{(j+1)} \\
f^{(j+1)}
\end{array}\right],
$$

the field formulae become

$$
\begin{gathered}
B_{x}(x, y, z)=B_{0} \mathrm{e}^{k y} \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \sum_{j=0}^{2 n+2} a_{n+1, j} f^{(j)}, \\
\mathbf{B}_{y, z}(x, y, z)=B_{0} \mathrm{e}^{k y} \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \sum_{j=0}^{2 n} a_{n j}\left[\begin{array}{c}
k f^{(j)}-\tau f^{(j+1)} \\
f^{(j+1)}
\end{array}\right] .
\end{gathered}
$$

Here, $a_{n j}$ can be precalculated for each magnet (specific k, τ values) but the derivatives $f^{(j)}$ need to be found for each point (ζ value). After the scaling factor $B_{0} \mathrm{e}^{k y}$, the rest of the formula is a function of x and ζ only, so it suffices to produce a 2D field map and use the scaling law

$$
\mathbf{B}(x, y, z)=\mathrm{e}^{k y} \mathbf{B}(x, 0, z-\tau y) .
$$

5 tanh Fringe Field Derivatives

Given a fringe field extent l, the field fall off function can have the form

$$
f(\zeta)=\sigma(\zeta / l)-\sigma((\zeta-L) / l),
$$

where $\sigma(x)$ is a unit sigmoid function going from 0 to 1 . The $n^{\text {th }}$ derivative is

$$
f^{(n)}(\zeta)=l^{-n}\left(\sigma^{(n)}(\zeta / l)-\sigma^{(n)}((\zeta-L) / l)\right) .
$$

A common sigmoid function with exponential fall off characteristics (e.g. for iron fringe field shielding) is $\sigma(x)=\frac{1}{2}+\frac{1}{2} \tanh x$. With this choice of $\sigma(x)$, the constant offset of $\frac{1}{2}$ cancels in the expression for f :

$$
f^{(n)}(\zeta)=\frac{l^{-n}}{2}\left(\tanh ^{(n)}(\zeta / l)-\tanh ^{(n)}((\zeta-L) / l)\right) .
$$

5.1 Computational Simplification

Usefully, tanh satisfies the relation
$\frac{\mathrm{d} \tanh x}{\mathrm{~d} x}=1-\tanh ^{2} x \quad \Rightarrow \quad \frac{\mathrm{~d} \tanh ^{n} x}{\mathrm{~d} x}=n \tanh ^{n-1} x\left(1-\tanh ^{2} x\right)=n \tanh ^{n-1} x-n \tanh ^{n+1} x$, which can be used to generate a recurrence for $\tanh ^{(n)} x$ in terms of powers of $\tanh x$:

$$
\begin{gathered}
\tanh ^{(n)} x=\sum_{j=0}^{n+1} t_{n j} \tanh ^{j} x \\
t_{01}=1, \quad t_{0 j}=0 \quad(j \neq 1), \quad t_{n+1, j}=(j+1) t_{n, j+1}-(j-1) t_{n, j-1} .
\end{gathered}
$$

Substituting this into the formula for $f^{(n)}$ gives

$$
f^{(n)}(\zeta)=\frac{l^{-n}}{2} \sum_{j=0}^{n+1} t_{n j}\left(\tanh ^{j}(\zeta / l)-\tanh ^{j}((\zeta-L) / l)\right)=\frac{l^{-n}}{2} \sum_{j=0}^{n+1} t_{n j}\left(T_{1}^{j}-T_{2}^{j}\right),
$$

where $T_{1}=\tanh (\zeta / l)$ and $T_{2}=\tanh ((\zeta-L) / l)$ can be precalculated for each ζ.

5.2 Calculating the Field Map

Precalculate $t_{n j}$ to the desired order and $a_{n j}$ for this specific magnet. For each value of ζ calculate T_{1} and T_{2}, then the vector of $T_{1}^{n}-T_{2}^{n}$ values that gives the vector of $f^{(n)}$ after a linear transformation using $t_{n j}$. Calculate two further linear transformations using $a_{n j}$:

$$
g_{n}=\sum_{j=0}^{2 n} a_{n j} f^{(j)} \quad \text { and } \quad h_{n}=\sum_{j=0}^{2 n} a_{n j} f^{(j+1)}
$$

Assuming the field map is being made at $y=0$, for each x value, the field components are:

$$
\begin{gathered}
B_{x}(x, 0, z)=B_{0} \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} g_{n+1} \\
\mathbf{B}_{y, z}(x, 0, z)=B_{0} \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}\left[\begin{array}{c}
k g_{n}-\tau h_{n} \\
h_{n}
\end{array}\right] .
\end{gathered}
$$

References

[1] Vertical Orbit Excursion FFAGs, S.J. Brooks, Proc. HB2010.
[2] Extending the Energy Range of 50 Hz Proton FFAGs, S.J. Brooks, Proc. PAC 2009.

