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1 Conventions, Assumptions and Definitions

The beam is travelling in the +z direction and the machine closed orbit shifts in the +y direction
(‘upwards’) with increasing energy. The standard hard-edged scaling VFFAG field is B, = Byehv
within the magnet body on the z = 0 mid-plane [1], where k& has units of inverse length.

For a skew magnet, the edge angle is parametrised by 7 = tan 6, where 6 is the angle between
the magnet edge and the y axis. Defining ( = z — 7y, the function f({) determines the field fall
off at both ends of the magnet, approaching f = 1 within the magnet and f = 0 outside.

2 Fringe Field Issues

A standard Maxwellian extrapolation [2] away from the z = 0 plane is insufficient because it only
satisfies the three Maxwell equations involving 0, and there is also the curl condition (VxB), =
O0yB, —0.B, = 0 to satisfy within the plane itself. This is not a problem for conventional dipoles
where only B, (the perpendicular field component) is nonzero on the midplane.

2.1 A General Solution for Zero Edge Angle
Given a desired By, the curl condition can be enforced explicitly via
y
0,B. —9.B,=0 =  9,B.=0.B, = B.= / 9.8, dy,

where the lower y-limit of the integral can be chosen as desired for each value of z. If the goal
is to have By, = f(z), the field components

By=f(2), B.=yf'(2)
satsify 0y B, = 0,By = f'(z). For the more general situation B, = ¢(y, z), the field
y
By :g(?/, Z)) Bz = / az!](?/, Z) dy

satisfies 0y B, = 0.By = 0,4(y, 2).



2.2 Extension to Angled Fringe Fields

Although the solution in the previous section can be used with ¢(y, z) equal to the desired
slanted field f({), this produces fringe fields that propagate vertically rather than parallel to
the magnet edge. However, consider the field

By =f(Q) —tyf'(Q),  B:=yf' Q).

Since 9y f(¢) = —7f'(¢) and 9, f(¢) = f'({), the curl condition is satisfied with d,B, = 0.B, =
1'(¢) = tyf"(¢). Can this be generalised in an analogous way to the zero edge angle case, by
replacing a multiplication by y with an integral in y? For a function g(y, () this would suggest
the field

) Yy
B, =g(y,() — T/ dc9(y, C) dy, B, = / 0cg(y, C) dy.

Checking the derivatives gives

0,B. = 0.5, = 0.9(y.C) — 7 [ 09(s,0) dy.

noting firstly that ¢ depends on y, so g(y, () depends on y twice and secondly that 9, = 0, since
y is held constant in both cases. The lower limit of the B, integral is still free to be chosen, this
time as a function of ¢ and its evaluation can be reused in By, = g(y,() — 7B..

2.3 Scalar Potential Formulation

The fringe field issue is caused by having to satisfy V x B = 0 in free space. However if B = V¢,
the curl of a gradient is zero so this equation always holds. The four fields given in this section
have the scalar potentials below (valid only on the z = 0 plane).

oo = yf(z)
Pgo = /g(yaz
b0 = yf(Q)
bg0 = /yg(y,é

3 The Scaling VFFAG Mid-Plane Field

Using the angled fringe field formula with g(y, () = Boe!¥ f(() yields

ey — kY ()

B = [ Boehf Q) dy = Bof' () ———,

where Y'({) is the lower limit of the integral. Because the integral is bounded in the negative y

direction (assuming k& > 0), the most elegant choice here is Y (¢) = —oo, so that
! !
B, = Boe’“yflio, By = Boe™ f(¢) — 7B, = Boe™ ( f(¢) - 7/ k(o> .



4 Off-plane Field Expansion

This section adapts the magnetic field expansion used in [2] for the vertical orbit-excursion case.
Maxwell’s equations in free space, V- B =V x B = 0, can be rearranged to give

0 -8, -0, o
uB=|0d, 0 0 B:[ 0 VW]B,
0, 0 0

from which a Taylor expansion in x yields

> x2n+1 9 n
B:E(xv Y, Z) = TLX:;) (2n + 1)| (_vy,z> (_vy,z ’ By,Z(Oa Y, Z))
x xQn e
By (0:2) = B0, 2) + 3. (5 V(- VE)" 9y Byal0.002)
n=1 :

Here it has been assumed that B,(0,y,z) = 0. Since our field has a scalar potential on the
midplane, B, . (0,y, z) = V. .¢(y, z), which simplifies the formulae further:

i x2n+l ) 1

B$($7y7 Z) = 7(_v ,z)n ¢(y> Z)

2 )t

Byo(e.000) = 3 TV, (V200 2)
Y,z PR = (27’7/)‘ Y,z Y,z I

For the VFFAG mid-plane field, ¢(y, z) = Boekyy.

4.1 The Iterated 2D Laplacian

The bulk of the field calculation is now in evaluating (—V> )"¢(y, z) from the summands in the
previous section. Assuming f and its derivatives are evaluated at ( unless otherwise stated, it
is useful to evaluate

V() = 0,0, fM) — 0.0, (M f)
= _ay(kekyf(n) — 7MYy _ g, (ekv p(nt1)
_ _(kZkaf(n) B QkTekyf(n+1) + T2ekyf(n+2)) _ ekyf(n+2)
= (k2 fM) 4 2kr D — (14 72) 02,

Therefore the general form is
2n )
(=V3. )"0y, 2) = Boe Y an; fV)
=0
and the recurrence relation is
Ant1,j = —k2anj +2kTan j—1 — (1+ 7'2)an7j_2,

where the definition is made that a,,_1 = a,,—2 = 0. Initially, agy = % and ag; = 0 elsewhere.



4.2 Field Evaluation Formulae for General f(()

Noting that
2 . .
n = O — 7 fGHD)
Vi (=V5.)"6(y, 2) =Boekyzanj[ it

(G+1)
=0 1Y
the field formulae become
2n+1 2n+2

By(,y,2) Boekyz Gn T Z ani15fY

X g2n 2 EfO) — 7 £G+D)
By,z(ﬂf,w):BoekyZ n) - ml ! fa+lj; :

Here, a,; can be precalculated for each magnet (spemﬁc k, T values) but the derivatives 1)
need to be found for each point (¢ value). After the scaling factor Bye*?, the rest of the formula
is a function of x and ( only, so it suffices to produce a 2D field map and use the scaling law

B(z,y,2) = kY B(z,0,z — 1y).

5 tanh Fringe Field Derivatives

Given a fringe field extent [, the field fall off function can have the form

f(Q) =a(/l) —a((C—L)/D),

where o(z) is a unit sigmoid function going from 0 to 1. The n'" derivative is

FOQ) =17 (6™ (/1) = ™~ L)) -

A common sigmoid function with exponential fall off characteristics (e.g. for iron fringe field
shielding) is o(z) = 5 + 3 tanhz. With this choice of o(z), the constant offset of 1 cancels in
the expression for f:

FO(Q) = o (1anh®)(¢/1) — tanh (¢~ L)/1))

5.1 Computational Simplification

Usefully, tanh satisfies the relation

dtanh z d tanh™
= 1—tanh®z ———— ~ = ntanh" ! z(1—tanh? ) = ntanh" ! z—ntanh" ' z,
dx dx
which can be used to generate a recurrence for tanh(™ z in terms of powers of tanh z:
n+1
tanh(™ z = Z tnj tanh’
7=0

ton=1, t; =0 (j#1), tnt1,; = (7 + Dt — (5 — Ditnj—1.
Substituting this into the formula for f gives

n n+1 —n n+1
Fm(e) = L 3ty (tanhd (¢/1) — tankd (¢ — L)/1)) = Ztm (79 —
7=0

where T} = tanh(¢/l) and T, = tanh(({ — L)/l) can be precalculated for each (.



5.2 Calculating the Field Map

Precalculate t,; to the desired order and a,; for this specific magnet. For each value of (
calculate Ty and T, then the vector of TJ* — T§ values that gives the vector of f(™) after a linear
transformation using ¢,;. Calculate two further linear transformations using a,;:

2n 2n
Gn = Z anjf(j) and h, = Z anjf(j+1)-
=0 i=0

Assuming the field map is being made at y = 0, for each x value, the field components are:

i :L,Zn—i-l
Bx(SC,O,Z) :BO o ayy In+l
= (2n + 1)!

00 2n

z
B, .(z,0,2) = By Z —
= (2n)!

kgn — Thy
hy, ’
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