Arbitrary Beams in Uniform Pipes

Stephen Brooks

September 7, 2012

1 Beam Slice Problem

Before considering the whole beam, a simpler problem is a slice (at rest) with charge density

$$
\rho=\rho_{2 \mathrm{D}}(x, y) \delta(z) .
$$

The electric field is given by a potential $\mathbf{E}=-\nabla V$ where $V=0$ on a perfectly conducting pipe whose shape does not change in z. Since $\nabla \cdot \mathbf{E}=\rho / \epsilon_{0}$, the equation to solve is $\nabla^{2} V=-\rho / \epsilon_{0}$.

For $z \neq 0, \rho=0$ so $\nabla^{2} V=0$ and the problem can be restated as a 'time evolution' problem

$$
\frac{\mathrm{d}^{2} V}{\mathrm{~d} z^{2}}=-\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}-\frac{\mathrm{d}^{2} V}{\mathrm{~d} y^{2}} \quad \Rightarrow \quad V^{\prime \prime}=-\nabla_{x, y}^{2} V
$$

where prime denotes differentiation by z and $\nabla_{x, y}^{2}$ is the 2D Laplacian.

1.1 Eigenmode Decomposition

Suppose there is a set of 2D eigenpotentials $V_{\lambda}(x, y)$ for various λ such that

$$
\nabla_{x, y}^{2} V_{\lambda}=\lambda V_{\lambda} \quad \text { and } \quad V_{\lambda}=0 \quad \text { on pipe. }
$$

Assuming the eigenpotentials span the space of all 2 D potentials within the pipe, decompose the 3D potential at each z via $V=\sum_{\lambda} a_{\lambda}(z) V_{\lambda}$. Now,

$$
V^{\prime \prime}=\sum_{\lambda} a_{\lambda}^{\prime \prime} V_{\lambda} \quad \text { and } \quad V^{\prime \prime}=-\nabla_{x, y}^{2} V=-\sum_{\lambda} a_{\lambda} \lambda V_{\lambda},
$$

so equating coefficients gives

$$
a_{\lambda}^{\prime \prime}=-\lambda a_{\lambda} .
$$

Noting that usually for these sorts of eigenmodes, $-\lambda>0$ and that realistically the potential should be exponentially decaying rather than increasing with z, the solution is

$$
a_{\lambda}(z)=A_{\lambda} \mathrm{e}^{-\sqrt{-\lambda} z}
$$

for $z \geq 0$ and some constants A_{λ}.

1.2 Initial Conditions

When passing through $z=0$ we expect an infinite value of $V^{\prime \prime}$ to occur because of the impulse nature of ρ and the x and y contributions to the Laplacian become negligible. By symmetry, $V(x, y,-z)=V(x, y, z)$ so $V^{\prime}\left(x, y, 0^{-}\right)=-V^{\prime}\left(x, y, 0^{+}\right)$and the impulse contribution to $V^{\prime \prime}=$ $\nabla^{2} V$ at $z=0$ is:

$$
2 V^{\prime}\left(x, y, 0^{+}\right) \delta(z)=-\rho / \epsilon_{0}=\frac{-\rho_{2 \mathrm{D}}(x, y) \delta(z)}{\epsilon_{0}} \quad \Rightarrow \quad V^{\prime}\left(x, y, 0^{+}\right)=\frac{-\rho_{2 \mathrm{D}}(x, y)}{2 \epsilon_{0}}
$$

Note that $V^{\prime}=\sum_{\lambda} a_{\lambda}^{\prime} V_{\lambda}$ and $a_{\lambda}^{\prime}=-\sqrt{-\lambda} A_{\lambda} \mathrm{e}^{-\sqrt{-\lambda} z}$, so

$$
V^{\prime}\left(z=0^{+}\right)=\sum_{\lambda}-\sqrt{-\lambda} A_{\lambda} V_{\lambda}=\frac{-\rho_{2 \mathrm{D}}}{2 \epsilon_{0}} .
$$

Assuming the eigenpotentials are orthogonal and taking the dot product with a particular V_{λ} gives

$$
\sqrt{-\lambda} A_{\lambda} V_{\lambda} \cdot V_{\lambda}=\frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{2 \epsilon_{0}} \quad \Rightarrow \quad A_{\lambda}=\frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{2 \epsilon_{0} \sqrt{-\lambda \mid}\left|V_{\lambda}\right|^{2}}
$$

Alternatively, if $\rho_{2 \mathrm{D}}=\sum_{\lambda} \rho_{\lambda} V_{\lambda}$ then $A_{\lambda}=\rho_{\lambda} /\left(2 \epsilon_{0} \sqrt{-\lambda}\right)$.

1.3 Beam Slice Potential

After obtaining V_{λ} with an eigenmode solver of the pipe and the constants A_{λ} using $\rho_{2 \mathrm{D}}$ and the formula in the previous section, the potential anywhere in the pipe is given by

$$
V(x, y, z)=\sum_{\lambda} A_{\lambda} \mathrm{e}^{-\sqrt{-\lambda}|z|} V_{\lambda}(x, y)
$$

2 Separable Charge Density Case

The result for beam slices generalises to separable charge densities (at rest)

$$
\rho=\rho_{2 \mathrm{D}}(x, y) f(z),
$$

since the problem is linear, translatable in z and $f(z)=\int_{-\infty}^{\infty} f(Z) \delta(z-Z) \mathrm{d} Z$,

$$
V(x, y, z)=\sum_{\lambda} A_{\lambda} V_{\lambda}(x, y) \int_{-\infty}^{\infty} f(Z) \mathrm{e}^{-\sqrt{-\lambda}|z-Z|} \mathrm{d} Z
$$

2.1 Constant Current Beam

Suppose that $f(z)$ is constant; without loss of generality, $f(z)=1$ with appropriate rescaling of $\rho_{2 \mathrm{D}}$. Now

$$
\int_{-\infty}^{\infty} f(Z) \mathrm{e}^{-\sqrt{-\lambda}|z-Z|} \mathrm{d} Z=\int_{-\infty}^{\infty} \mathrm{e}^{-\sqrt{-\lambda}|z|} \mathrm{d} z=2 \int_{0}^{\infty} \mathrm{e}^{-\sqrt{-\lambda} z} \mathrm{~d} z=\frac{2}{\sqrt{-\lambda}}
$$

so the potential no longer depends on z :

$$
V(x, y, z)=\sum_{\lambda} \frac{2 A_{\lambda}}{\sqrt{-\lambda}} V_{\lambda}(x, y)=V_{2 \mathrm{D}}(x, y)=\frac{1}{\epsilon_{0}} \sum_{\lambda} \frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{-\lambda\left|V_{\lambda}\right|^{2}} V_{\lambda}(x, y)
$$

If $\rho_{2 \mathrm{D}}=\sum_{\lambda} \rho_{\lambda} V_{\lambda}$ then by orthogonality, $\rho_{2 \mathrm{D}} \cdot V_{\lambda}=\rho_{\lambda}\left|V_{\lambda}\right|^{2}$ and

$$
V_{2 \mathrm{D}}=\sum_{\lambda} \frac{\rho_{\lambda}}{\epsilon_{0}(-\lambda)} V_{\lambda} .
$$

This can also be derived quickly from the 2 D equation $\nabla_{x, y}^{2} V=-\rho / \epsilon_{0}$ that assumes $\frac{\mathrm{d}}{\mathrm{d} z}=0$.

2.2 Longitudinal Space Charge Force

For longitudinal space charge the field component $E_{z}=-V^{\prime}$ is of interest and

$$
\begin{aligned}
V^{\prime}(x, y, z) & =\sum_{\lambda} A_{\lambda} V_{\lambda}(x, y) \sqrt{-\lambda}\left(-\int_{-\infty}^{z} f(Z) \mathrm{e}^{\sqrt{-\lambda}(Z-z)} \mathrm{d} Z+\int_{z}^{\infty} f(Z) \mathrm{e}^{\sqrt{-\lambda}(z-Z)} \mathrm{d} Z\right) \\
& =\sum_{\lambda} A_{\lambda} V_{\lambda}(x, y) \sqrt{-\lambda} \int_{-\infty}^{\infty} f(Z) \operatorname{sgn}(Z-z) \mathrm{e}^{-\sqrt{-\lambda}|Z-z|} \mathrm{d} Z .
\end{aligned}
$$

2.3 Derivative of Line Density Approximation

Since $V^{\prime}=0$ for $f(z)=1$, by linearity constant contributions to f can be neglected when calculating E_{z}. Also, V^{\prime} is only sensitive to the value of f 'locally', that is in the region a few times $1 / \sqrt{-\lambda}$ (the exponential decay length) from z. This means the next Taylor series term $f(Z)=f^{\prime}(z)(Z-z)$ can be used as an approximation. Note that defining the line density $\rho_{1 \mathrm{D}}(z)=\iint \rho(x, y, z) \mathrm{d} x \mathrm{~d} y=f(z) \iint \rho_{2 \mathrm{D}}$, we have $f^{\prime}(z)=\rho_{1 \mathrm{D}}^{\prime}(z) / \iint \rho_{2 \mathrm{D}}$. The integral in the last section becomes:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(Z) \operatorname{sgn}(Z-z) \mathrm{e}^{-\sqrt{-\lambda}|Z-z|} \mathrm{d} Z & =f^{\prime}(z) \int_{-\infty}^{\infty}(Z-z) \operatorname{sgn}(Z-z) \mathrm{e}^{-\sqrt{-\lambda}|Z-z|} \mathrm{d} Z \\
& =f^{\prime}(z) \int_{-\infty}^{\infty}|Z-z| \mathrm{e}^{-\sqrt{-\lambda}|Z-z|} \mathrm{d} Z \\
& =2 f^{\prime}(z) \int_{0}^{\infty} Z \mathrm{e}^{-\sqrt{-\lambda} Z} \mathrm{~d} Z \\
& =2 f^{\prime}(z)\left[\left(-\frac{Z}{\sqrt{-\lambda}}-\frac{1}{-\lambda}\right) \mathrm{e}^{-\sqrt{-\lambda} Z}\right]_{Z=0}^{\infty} \\
& =2 f^{\prime}(z) \frac{1}{-\lambda}
\end{aligned}
$$

So the potential is approximately

$$
V^{\prime}(x, y, z)=2 f^{\prime}(z) \sum_{\lambda} \frac{A_{\lambda}}{\sqrt{-\lambda}} V_{\lambda}(x, y) \quad=\quad f^{\prime}(z) V_{2 \mathrm{D}}(x, y),
$$

that is $f^{\prime}(z)$ times the formula for V in the constant current case. Substituting the formula for A_{λ} gives

$$
V^{\prime}(x, y, z)=f^{\prime}(z) \sum_{\lambda} \frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{\epsilon_{0}(-\lambda)\left|V_{\lambda}\right|^{2}} V_{\lambda}(x, y)
$$

and

$$
\frac{E_{z}}{\rho_{1 \mathrm{D}}^{\prime}}=\frac{-V^{\prime}}{f^{\prime}(z) \iint \rho_{2 \mathrm{D}}}=\frac{1}{\epsilon_{0} \iint \rho_{2 \mathrm{D}}} \sum_{\lambda} \frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{\lambda\left|V_{\lambda}\right|^{2}} V_{\lambda}(x, y) \quad=\frac{-V_{2 \mathrm{D}}(x, y)}{\iint \rho_{2 \mathrm{D}}} .
$$

This still depends on x and y. To further approximate, an averaged value over the whole beam can be obtained by dotting this formula with $\rho_{2 \mathrm{D}} / \iint \rho_{2 \mathrm{D}}$:

$$
\left\langle\frac{E_{z}}{\rho_{1 \mathrm{D}}^{\prime}}\right\rangle=\frac{1}{\epsilon_{0}\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} \sum_{\lambda} \frac{\left(\rho_{2 \mathrm{D}} \cdot V_{\lambda}\right)^{2}}{\lambda\left|V_{\lambda}\right|^{2}}=\frac{-\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}}{\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} .
$$

2.4 Relationship to the g Factor

A conventional way of writing the longitudinal space charge field (e.g. [1]) is

$$
E_{z}=E_{z, \text { wall }}-\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\gamma^{2}}\left(1+2 \ln \frac{r_{\text {wall }}}{r_{\text {beam }}}\right) \frac{\partial \lambda}{\partial z},
$$

where q is the charge on an individual particle, γ is the gamma factor of a moving beam and λ is the particle line density. So far this report has considered perfectly-conducting walls where $E_{z, \text { wall }}=0$ and stationary 'beams' for which $\gamma=1$. The charge line density $\rho_{1 \mathrm{D}}=q \lambda$. In this case,

$$
E_{z}=-\frac{1}{4 \pi \epsilon_{0}}\left(1+2 \ln \frac{r_{\text {wall }}}{r_{\text {beam }}}\right) \rho_{1 \mathrm{D}}^{\prime}
$$

where the dimensionless term in brackets is called the ' g factor'. This formula assumes a circular pipe and the g factor differs for other shapes. In general, this may be related to the quantity in the previous section via

$$
E_{z}=-\frac{1}{4 \pi \epsilon_{0}} g \rho_{1 \mathrm{D}}^{\prime} \quad \Rightarrow \quad g=-4 \pi \epsilon_{0}\left\langle\frac{E_{z}}{\rho_{1 \mathrm{D}}^{\prime}}\right\rangle \quad=\quad \frac{4 \pi}{\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} \sum_{\lambda} \frac{\left(\rho_{2 \mathrm{D}} \cdot V_{\lambda}\right)^{2}}{-\lambda\left|V_{\lambda}\right|^{2}} .
$$

In terms of the 2 D potential,

$$
g=4 \pi \epsilon_{0} \frac{\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}}{\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} \quad \text { and } \quad\left\langle E_{z}\right\rangle=-\rho_{1 \mathrm{D}}^{\prime} \frac{\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}}{\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} .
$$

2.5 Example: Circular Pipe

For a circularly symmetric beam in a circular pipe, $\rho_{2 \mathrm{D}} \cdot V_{\lambda}=0$ for eigenpotentials that vary with θ, leaving only those expressable as $V(r)$. The eigenpotentials must satisfy

$$
\nabla_{x, y}^{2} V(r)=\frac{1}{r} \frac{\partial V}{\partial r}+\frac{\partial^{2} V}{\partial r^{2}}=\lambda V \quad \Rightarrow \quad r^{2} \frac{\partial^{2} V}{\partial r^{2}}+r \frac{\partial V}{\partial r}-\lambda r^{2} V=0
$$

where $V^{\prime}(0)=0$ by differentiability at the centre and $V(R)=0$ boundary condition for a pipe of radius R. Changing to a rescaled variable x with $x^{2}=-\lambda r^{2}$ turns this into Bessel's equation

$$
x^{2} \frac{\partial^{2} V}{\partial x^{2}}+x \frac{\partial V}{\partial x}+\left(x^{2}-\alpha^{2}\right) V=0
$$

for $\alpha=0$, with boundary conditions $V^{\prime}(0)=0$ and $V(x=\sqrt{-\lambda} R)=0$. This has the solution $V=J_{0}(x)=J_{0}(\sqrt{-\lambda} r)$ but to satisfy the boundary condition, $\sqrt{-\lambda} R=J_{0 n}$ for some n, where $J_{0 n}$ is the $n^{\text {th }}$ root of J_{0} (for which there is no analytic expression). Thus the eigenvalues are $\lambda_{n}=-\left(J_{0 n} / R\right)^{2}$ and $V_{\lambda_{n}}$ will be abbreviated to $V_{n}(r)=J_{0}\left((r / R) J_{0 n}\right)$.

The established result $1+2 \ln \left(R / r_{\text {beam }}\right)$ for a circular uniform beam is actually calculated for the field at the centre of the pipe and not averaged over the beam, so define the positiondependent g factor as

$$
g(x, y)=-4 \pi \epsilon_{0} \frac{E_{z}(x, y)}{\rho_{1 \mathrm{D}}^{\prime}}=\frac{4 \pi}{\iint \rho_{2 \mathrm{D}}} \sum_{\lambda} \frac{\rho_{2 \mathrm{D}} \cdot V_{\lambda}}{-\lambda\left|V_{\lambda}\right|^{2}} V_{\lambda}(x, y)=4 \pi \epsilon_{0} \frac{V_{2 \mathrm{D}}(x, y)}{\iint \rho_{2 \mathrm{D}}} .
$$

2.5.1 Circular Uniform Beam

Assume a uniform, normalised beam for which $\rho_{2 \mathrm{D}}=1 /\left(\pi r_{\text {beam }}^{2}\right)$ for $r \leq r_{\text {beam }}$ and zero outside. Noting $\iint \rho_{2 \mathrm{D}}=1$ and $J_{0}(0)=1$, the value of interest is

$$
g(0,0)=4 \pi \sum_{n} \frac{\rho_{2 \mathrm{D}} \cdot V_{n}}{-\lambda_{n}\left|V_{n}\right|^{2}} V_{n}(r=0)=4 \pi \sum_{n} \frac{\rho_{2 \mathrm{D}} \cdot V_{n}}{\left(J_{0 n} / R\right)^{2}\left|V_{n}\right|^{2}}
$$

Consider the dot product

$$
\rho_{2 \mathrm{D}} \cdot V_{n}=\frac{1}{\pi r_{\text {beam }}^{2}} \int_{r=0}^{r_{\text {beam }}} J_{0}\left((r / R) J_{0 n}\right) 2 \pi r \mathrm{~d} r=\frac{2}{r_{\text {beam }}^{2}} \int_{r=0}^{r_{\text {beam }}} J_{0}\left((r / R) J_{0 n}\right) r \mathrm{~d} r
$$

rescale the integral with $x=(r / R) J_{0 n}$, giving $r \mathrm{~d} r=\left(R / J_{0 n}\right)^{2} x \mathrm{~d} x$:

$$
\rho_{2 \mathrm{D}} \cdot V_{n}=\frac{2}{\left(\left(r_{\text {beam }} / R\right) J_{0 n}\right)^{2}} \int_{x=0}^{\frac{r_{\text {beam }}}{R} J_{0 n}} x J_{0}(x) \mathrm{d} x
$$

Properties of the Bessel functions give that $x J_{0}(x)$ is the derivative of $x J_{1}(x)$, so

$$
\rho_{2 \mathrm{D}} \cdot V_{n}=\frac{2}{\left(r_{\text {beam }} / R\right) J_{0 n}} J_{1}\left(\left(r_{\text {beam }} / R\right) J_{0 n}\right)=\frac{2}{f J_{0 n}} J_{1}\left(f J_{0 n}\right)
$$

where the beam radius fraction $f=r_{\text {beam }} / R$ has been defined (so the textbook result $1+$ $2 \ln \left(R / r_{\text {beam }}\right)$ becomes $\left.1-2 \ln f\right)$. The other integral to calculate is

$$
\left|V_{n}\right|^{2}=\int_{r=0}^{R} J_{0}\left((r / R) J_{0 n}\right)^{2} 2 \pi r \mathrm{~d} r=2 \pi R^{2} \int_{x=0}^{1} x J_{0}\left(x J_{0 n}\right)^{2} \mathrm{~d} x
$$

where the substitution $x=r / R$ and $r \mathrm{~d} r=R^{2} x \mathrm{~d} x$ has been used. Compare with the orthogonality relation for Bessel functions

$$
\int_{0}^{1} x J_{\alpha}\left(x J_{\alpha m}\right) J_{\alpha}\left(x J_{\alpha n}\right) \mathrm{d} x=\frac{\delta_{m n}}{2} J_{\alpha+1}\left(J_{\alpha m}\right)^{2}
$$

which for $\alpha=0$ and $m=n$ becomes

$$
\int_{0}^{1} x J_{0}\left(x J_{0 n}\right)^{2} \mathrm{~d} x=\frac{1}{2} J_{1}\left(J_{0 n}\right)^{2}
$$

therefore

$$
\left|V_{n}\right|^{2}=\pi R^{2} J_{1}\left(J_{0 n}\right)^{2}
$$

Substituting these into the formula gives

$$
g(0,0)=4 \pi \sum_{n} \frac{\frac{2}{f J_{0 n}} J_{1}\left(f J_{0 n}\right)}{\left(J_{0 n} / R\right)^{2} \pi R^{2} J_{1}\left(J_{0 n}\right)^{2}}=8 \sum_{n} \frac{J_{1}\left(f J_{0 n}\right)}{f J_{0 n}^{3} J_{1}\left(J_{0 n}\right)^{2}} .
$$

The beam-averaged g factor in this case just has an additional factor of $\rho_{2 \mathrm{D}} \cdot V_{n}$:

$$
g=16 \sum_{n} \frac{J_{1}\left(f J_{0 n}\right)^{2}}{f^{2} J_{0 n}^{4} J_{1}\left(J_{0 n}\right)^{2}}
$$

Numerical evaluation (30000 terms) shows that to within 10^{-7}, this $g(0,0)=1-2 \ln f$ as required and $g=\frac{1}{2}-2 \ln f$.

2.5.2 Circular Waterbag Beam

From results in the last section, for any beam normalised by $\iint \rho_{2 \mathrm{D}}=1$ in a circular pipe,

$$
g=4 \sum_{n} \frac{\left(\rho_{2 \mathrm{D}} \cdot V_{n}\right)^{2}}{J_{0 n}^{2} J_{1}\left(J_{0 n}\right)^{2}}
$$

is the averaged g factor, where $V_{n}=J_{0}\left((r / R) J_{0 n}\right)$. For a waterbag beam, $\rho_{2 \mathrm{D}} \propto 1-\left(r / r_{\text {beam }}\right)^{2}$ for $r \leq r_{\text {beam }}$ and zero outside, so when normalised, $\rho_{2 \mathrm{D}}=\left(2 /\left(\pi r_{\text {beam }}^{2}\right)\right)\left(1-\left(r / r_{\text {beam }}\right)^{2}\right)$. The term that needs calculating is

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n} & =\frac{2}{\pi r_{\text {beam }}^{2}} \int_{r=0}^{r_{\text {beam }}}\left(1-\left(r / r_{\text {beam }}\right)^{2}\right) J_{0}\left((r / R) J_{0 n}\right) 2 \pi r \mathrm{~d} r \\
& =\frac{4}{r_{\text {beam }}^{2}} \int_{r=0}^{r_{\text {beam }}}\left(1-\left(r / r_{\text {beam }}\right)^{2}\right) J_{0}\left((r / R) J_{0 n}\right) r \mathrm{~d} r .
\end{aligned}
$$

Now perform the same rescaling as before with $x=(r / R) J_{0 n}, r \mathrm{~d} r=\left(R / J_{0 n}\right)^{2} x \mathrm{~d} x$ and $r / r_{\text {beam }}=x /\left(f J_{0 n}\right)$:

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n} & =\frac{4 R^{2}}{r_{\text {beam }}^{2} J_{0 n}^{2}} \int_{x=0}^{f J_{0 n}}\left(1-\left(x /\left(f J_{0 n}\right)\right)^{2}\right) J_{0}(x) x \mathrm{~d} x \\
& =\frac{4}{f^{2} J_{0 n}^{2}} \int_{x=0}^{f J_{0 n}} x J_{0}(x)-\frac{1}{f^{2} J_{0 n}^{2}} x^{3} J_{0}(x) \mathrm{d} x .
\end{aligned}
$$

Since $J_{0}^{\prime}=-J_{1}$ and $\left(x J_{1}\right)^{\prime}=x J_{0}$, it can be seen that $\left(x^{3}-4 x\right) J_{1}+2 x^{2} J_{0}$ differentiates to $x^{3} J_{0}$. Therefore

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n} & =\frac{4}{f^{2} J_{0 n}^{2}}\left[x J_{1}(x)-\frac{\left(x^{3}-4 x\right) J_{1}(x)+2 x^{2} J_{0}(x)}{f^{2} J_{0 n}^{2}}\right]_{x=0}^{f J_{0 n}} \\
& =\frac{4}{f^{2} J_{0 n}^{2}}\left(f J_{0 n} J_{1}\left(f J_{0 n}\right)-\frac{\left(\left(f J_{0 n}\right)^{3}-4 f J_{0 n}\right) J_{1}\left(f J_{0 n}\right)+2\left(f J_{0 n}\right)^{2} J_{0}\left(f J_{0 n}\right)}{f^{2} J_{0 n}^{2}}\right) \\
& =\frac{4}{f^{2} J_{0 n}^{2}}\left(f J_{0 n} J_{1}\left(f J_{0 n}\right)-f J_{0 n} J_{1}\left(f J_{0 n}\right)-2 J_{0}\left(f J_{0 n}\right)+\frac{4 J_{1}\left(f J_{0 n}\right)}{f J_{0 n}}\right) \\
& =\frac{8}{f^{2} J_{0 n}^{2}}\left(\frac{2 J_{1}\left(f J_{0 n}\right)}{f J_{0 n}}-J_{0}\left(f J_{0 n}\right)\right) \quad\left(\begin{array}{ll}
\text { c.f. } \left.\frac{2}{f J_{0 n}} J_{1}\left(f J_{0 n}\right) \quad \text { for uniform beam }\right) .
\end{array}\right.
\end{aligned}
$$

Substituting back into the formula for g gives

$$
g=256 \sum_{n} \frac{\left(\frac{2 J_{1}\left(f J_{0 n}\right)}{f J_{0 n}}-J_{0}\left(f J_{0 n}\right)\right)^{2}}{f^{4} J_{0 n}^{6} J_{1}\left(J_{0 n}\right)^{2}} .
$$

Numerical computation (30000 terms) shows that to within $10^{-11}, g=\frac{11}{12}-2 \ln f$.

2.5.3 Potential Method for General Circularly-Symmetric Beam

If the constant current potential $V_{2 \mathrm{D}}$ is known, the g factor $4 \pi \epsilon_{0}\left(\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}\right) /\left(\iint \rho_{2 \mathrm{D}}\right)^{2}$ can be found by calculating $\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}$ directly. In the case of a circular pipe with perfectly conducting boundary at $r=R, V_{2 \mathrm{D}}=V(r)$ is determined by

$$
\nabla_{x, y}^{2} V(r)=\frac{1}{r} V^{\prime}+V^{\prime \prime}=-\frac{\rho}{\epsilon_{0}}, \quad V(R)=0
$$

where prime denotes differentiation by r not z here. The integral to be evaluated is

$$
\rho_{2 \mathrm{D}} \cdot V_{2 \mathrm{D}}=\int_{0}^{R} \rho(r) V(r) 2 \pi r \mathrm{~d} r
$$

and while there is no general simplification of this, Baartman provides solutions for a wide range of cases using this method in [2].

2.6 Example: Rectangular Pipe

A rectangular beam pipe $[0, X] \times[0, Y]$ has eigenpotentials

$$
V_{n m}=\sin (n \pi x / X) \sin (m \pi y / Y) \quad \text { with } \quad \lambda_{n m}=-(n \pi / X)^{2}-(m \pi / Y)^{2}
$$

for integers $n, m \geq 1$. Calculations will also require the value

$$
\left|V_{n m}\right|^{2}=\int_{0}^{X} \int_{0}^{Y} V_{n m}^{2} \mathrm{~d} x \mathrm{~d} y=\int_{0}^{X} \sin ^{2}(n \pi x / X) \mathrm{d} x \int_{0}^{Y} \sin ^{2}(m \pi y / Y) \mathrm{d} y=\frac{X Y}{4} .
$$

Substituting these into the g factor formula gives

$$
g=\frac{16}{\pi X Y\left(\iint \rho_{2 \mathrm{D}}\right)^{2}} \sum_{n, m \geq 1} \frac{\left(\rho_{2 \mathrm{D}} \cdot V_{n m}\right)^{2}}{(n / X)^{2}+(m / Y)^{2}} .
$$

2.6.1 Uniform Rectangular Beam

Suppose the beam occupies the rectangle $\left[x_{0}, x_{1}\right] \times\left[y_{0}, y_{1}\right]$ with $\rho_{2 \mathrm{D}}=1$, so that $\iint \rho_{2 \mathrm{D}}=$ $\left(x_{1}-x_{0}\right)\left(y_{1}-y_{0}\right)=\Delta x \Delta y$. Calculate

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n m} & =\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}} \sin (n \pi x / X) \sin (m \pi y / Y) \mathrm{d} x \mathrm{~d} y \\
& =\left[\frac{-X}{n \pi} \cos (n \pi x / X)\right]_{x_{0}}^{x_{1}}\left[\frac{-Y}{m \pi} \cos (m \pi y / Y)\right]_{y_{0}}^{y_{1}} \\
& =\frac{X Y}{n m \pi^{2}}\left(\cos \left(n \pi x_{1} / X\right)-\cos \left(n \pi x_{0} / X\right)\right)\left(\cos \left(m \pi y_{1} / Y\right)-\cos \left(m \pi y_{0} / Y\right)\right) .
\end{aligned}
$$

So that

$$
g=\frac{16 X Y}{\pi^{5} \Delta x^{2} \Delta y^{2}} \sum_{n, m \geq 1} \frac{\left(\cos \left(n \pi x_{1} / X\right)-\cos \left(n \pi x_{0} / X\right)\right)^{2}\left(\cos \left(m \pi y_{1} / Y\right)-\cos \left(m \pi y_{0} / Y\right)\right)^{2}}{n^{2} m^{2}\left((n / X)^{2}+(m / Y)^{2}\right)} .
$$

2.6.2 Elliptical Gaussian Beam

An elliptical Gaussian beam has $\rho_{2 \mathrm{D}}=\mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}\right)}=\mathrm{e}^{-\mathbf{x}^{T} \mathbf{M x}}$ where $\mathbf{M}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. It is well known that $\iint \mathrm{e}^{-\mathbf{x}^{T} \mathbf{x}}=\iint \mathrm{e}^{-\left(x^{2}+y^{2}\right)}=\pi$, so composing an arbitrary linear function $\mathbf{x} \rightarrow \mathbf{Q x}$ gives $\iint \mathrm{e}^{-\mathbf{x}^{T} \mathbf{Q}^{T} \mathbf{Q x}}=\pi / \operatorname{det} \mathbf{Q}$, thus if $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{M}$ then $(\operatorname{det} \mathbf{Q})^{2}=\operatorname{det} \mathbf{M}$ and $\iint \mathrm{e}^{-\mathbf{x}^{T} \mathbf{M x}}=\pi / \sqrt{\operatorname{det} \mathbf{M}}$, that is $\iint \rho_{2 \mathrm{D}}=\pi / \sqrt{a c-b^{2}}$.

For a Gaussian centred on (\bar{x}, \bar{y}) that is not significantly outside the beam pipe, make the approximation to integrate over the whole $x-y$ plane

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n m} & =\int_{-\bar{x}}^{X-\bar{x}} \int_{-\bar{y}}^{Y-\bar{y}} \mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}\right)} \sin (n \pi(\bar{x}+x) / X) \sin (m \pi(\bar{y}+y) / Y) \mathrm{d} x \mathrm{~d} y \\
& \simeq \iint \mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}\right)} \sin (n \pi(\bar{x}+x) / X) \sin (m \pi(\bar{y}+y) / Y)
\end{aligned}
$$

Note that $\sin x=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}\right)$ so that

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n m} & \simeq \frac{1}{-4} \sum_{j, k=-1,1} \iint \mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}\right)} j \mathrm{e}^{j \mathrm{i} n \pi(\bar{x}+x) / X} k \mathrm{e}^{k \mathrm{i} m \pi(\bar{y}+y) / Y} \\
& =-\frac{1}{4} \sum_{j, k=-1,1} j k \mathrm{e}^{\mathrm{i} \pi(j n \bar{x} / X+k m \bar{y} / Y)} \iint \mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}-(\mathrm{i} \pi j n / X) x-(\mathrm{i} \pi k m / Y) y\right)}
\end{aligned}
$$

The negative exponent is of the form $\mathbf{x}^{T} \mathbf{M} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$, where $\mathbf{b}^{T}=-\mathrm{i} \pi[j n / X, k m / Y]$. Noting that $\mathbf{M}=\mathbf{M}^{T}$, a shift of origin expands as $(\mathbf{x}+\mathbf{c})^{T} \mathbf{M}(\mathbf{x}+\mathbf{c})=\mathbf{x}^{T} \mathbf{M} \mathbf{x}+2 \mathbf{c}^{T} \mathbf{M} \mathbf{x}+\mathbf{c}^{T} \mathbf{M} \mathbf{c}$. This is equal to $\mathbf{x}^{T} \mathbf{M} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+\mathbf{c}^{T} \mathbf{M} \mathbf{c}$ if one puts $\mathbf{c}=\frac{1}{2} \mathbf{M}^{-1} \mathbf{b}$. Thus $\mathbf{x}^{T} \mathbf{M} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}=(\mathbf{x}+\mathbf{c})^{T} \mathbf{M}(\mathbf{x}+$ c) $-\frac{1}{4} \mathbf{b}^{T} \mathbf{M}^{-1} \mathbf{b}$. The shift won't affect the integral while the constant term in the exponent becomes a constant factor:

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n m} & \simeq-\frac{1}{4} \sum_{j, k=-1,1} j k \mathrm{e}^{\mathrm{i} \pi(j n \bar{x} / X+k m \bar{y} / Y)} \mathrm{e}^{\frac{1}{4} \mathbf{b}^{T} \mathbf{M}^{-1} \mathbf{b}} \iint \mathrm{e}^{-\left(a x^{2}+2 b x y+c y^{2}\right)} \\
& =-\frac{\pi}{4 \sqrt{a c-b^{2}}} \sum_{j, k=-1,1} j k \mathrm{e}^{\mathrm{i} \pi(j n \bar{x} / X+k m \bar{y} / Y)} \mathrm{e}^{\frac{1}{4} \mathbf{b}^{T} \mathbf{M}^{-1} \mathbf{b}}
\end{aligned}
$$

To evaluate the exponent, note that $\mathbf{M}^{-1}=\frac{1}{a c-b^{2}}\left[\begin{array}{cc}c & -b \\ -b & a\end{array}\right]$ so

$$
\begin{aligned}
\frac{1}{4} \mathbf{b}^{T} \mathbf{M}^{-1} \mathbf{b} & =-\frac{\pi^{2}}{4}[j n / X, k m / Y] \frac{1}{a c-b^{2}}\left[\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right]\left[\begin{array}{c}
j n / X \\
k m / Y
\end{array}\right] \\
& =-\frac{\pi^{2}}{4\left(a c-b^{2}\right)}\left(c(j n / X)^{2}-2 b(j n / X)(k m / Y)+a(k m / Y)^{2}\right) \\
& =-\frac{\pi^{2}}{4\left(a c-b^{2}\right)}\left(c(n / X)^{2}-2 b j k(n / X)(m / Y)+a(m / Y)^{2}\right)
\end{aligned}
$$

where the last line has used $j^{2}=k^{2}=1$. The summand apart from the $\mathrm{e}^{\mathrm{i} \pi C}$ term now only depends on $j k$, which shall be renamed to j and collect pairs of terms which differ by both j and k changing sign, which inverts the sign of C, making $\mathrm{e}^{\mathrm{i} \pi C}+\mathrm{e}^{-\mathrm{i} \pi C}=2 \cos \pi C$.

$$
\begin{aligned}
\rho_{2 \mathrm{D}} \cdot V_{n m} & \simeq-\frac{\pi}{2 \sqrt{a c-b^{2}}} \sum_{j=-1,1} j \cos \pi C \exp E \\
& =-\frac{1}{2} \iint \rho_{2 \mathrm{D}} \sum_{j=-1,1} j \cos \pi C \exp E
\end{aligned}
$$

where $C=n \bar{x} / X+j m \bar{y} / Y$ and $E=-\frac{\pi^{2}}{4\left(a c-b^{2}\right)}\left(c(n / X)^{2}-2 b j(n / X)(m / Y)+a(m / Y)^{2}\right)$. Aside from the cancellation of $\iint \rho_{2 \mathrm{D}}$ no further simplification is possible on substituting into the g factor formula.

3 Moving Beams (Longitudinal Space Charge)

Previous sections have only considered a stationary beam, or alternatively a beam in its comoving frame (assuming negligible relative velocities between particles). Writing the co-moving quantities with a tilde, the g factor relationship is $\tilde{E}_{z}=-\frac{1}{4 \pi \epsilon_{0}} g \tilde{\rho}_{1 \mathrm{D}}^{\prime}$. The velocity of the beam is parallel to the z axis, so the parallel component of the electric field $E_{z}=\tilde{E}_{z}$ is unchanged under frame transformation and produces no other field components.

The line density is less trivial to transform. Define $Q(z)=\int_{-\infty}^{z} \rho_{1 \mathrm{D}}(Z) \mathrm{d} Z$ to be the amount of charge at positions $Z \leq z . Q$ transforms as a scalar quantity whereas the density $\rho_{1 \mathrm{D}}=\frac{\mathrm{d} Q}{\mathrm{~d} z}$ is actually a rank 1 covariant tensor and $\rho_{1 \mathrm{D}}^{\prime}=\frac{\mathrm{d}^{2} Q}{\mathrm{~d} z^{2}}$ is rank 2 covariant. As the beam is larger in its rest frame by $\tilde{z}=\gamma z$, this means $\rho_{1 \mathrm{D}}^{\prime}=\left(\frac{\mathrm{d} \tilde{z}}{\mathrm{~d} z}\right)^{2} \frac{\mathrm{~d}^{2} Q}{\mathrm{~d} \tilde{z}^{2}}=\gamma^{2} \tilde{\rho}_{1 \mathrm{D}}^{\prime}$.

Putting this all together gives the g factor relation for a moving beam as

$$
E_{z}=-\frac{1}{4 \pi \epsilon_{0}} \frac{g}{\gamma^{2}} \rho_{1 \mathrm{D}}^{\prime}
$$

3.1 Space Charge Energy Gain (or loss) per Turn

If a turn in the machine has length L, then $\Delta E=L \frac{\mathrm{~d} E}{\mathrm{~d} z}=L F_{z}=L q E_{z}$, therefore

$$
\Delta E=-\frac{L q}{4 \pi \epsilon_{0}} \frac{g}{\gamma^{2}} \rho_{1 \mathrm{D}}^{\prime}
$$

This is equivalent to a voltage of

$$
V=\frac{L}{4 \pi \epsilon_{0}} \frac{g}{\gamma^{2}} \rho_{1 \mathrm{D}}^{\prime}
$$

References

[1] Particle Accelerator Physics II, 2 ${ }^{\text {nd }}$ Edition, H. Wiedemann, section 10.2.4 Longitudinal Space-Charge Field, equation (10.55).
[2] Form Factor g In Longitudinal Space Charge Impedance, R. Baartman, TRIUMF design note 1992-TRI-DN-K206, available from http://lin12.triumf.ca/text/design_notes/k206/ k206h.pdf.

