Vertical Orbit-Excursion FFAGs (VFFAGs)

a.k.a. FFAG Cyclotrons (Ohkawa, 1955) a.k.a. Helicoidal FFAGs (Leleux, 1959) a.k.a. Ring Cyclotrons (Teichmann, 1960-2)

- I. Principle & Magnetic Fields
 - II. Proton Driver Study
 - III. Isochronous Machines
- IV. Three-Lens Horizontal FFAGs
 - V. Proton Omni-Ring

Vertical Orbit-Excursion FFAGs (VFFAGs) for applications

a.k.a. computers and superconducting magnets weren't much good in 1960 but now they are

- Smaller Hadron Therapy Magnets
 - II. Neutrino Factory, ISIS Upgrade
 - III. Transmutation, Antimatter(?)
 - IV. Design by Artificial Intelligence
- V. High Beam Dynamics R&D per £

I. Principle & Magnetic Fields

Horizontal SC magnet problem

 Getting vertical B field requires same-direction current windings (nearby)

B_v proportional to x/(a²+x²)

Horizontal SC magnet variation

 Getting horizontal B field requires opposite current windings and is easier

B_x proportional to a/(a²+x²)

Vertical SC magnet

- But now the field is in the wrong direction!
- That's OK, rotate the magnet
- The dipole field is there
- But what sort of focussing does this magnet give?

"Scaling" VFFAG magnet

 Dipole field should increase moving up the magnet, so set B_v = B₀e^{ky} on axis (x=0)

Subtracting dipole component leaves the field

of a skew quad:

 Exponential is good because moving upwards just scales the field and all gradients

- Thus closed orbits at different momenta are exactly the same shape, just translated upwards
- VFFAG = Vertical orbit excursion FFAG

Scaling VFFAG Field & Scaling Law

$$B_y = B_0 e^{ky} \cos kx \qquad B_x = -B_0 e^{ky} \sin kx$$

$$B_x = -B_0 e^{ky} \sin kx$$

$$y \mapsto y + \Delta y$$
,

$$(p, \mathbf{B}) \mapsto (p, \mathbf{B}) e^{k\Delta y}$$

FODO Scaling VFFAG Machine

- First VFFAG tracking simulation, for HB2010
 - 2D, zero space charge, nonlinear magnets
- 150mm.mrad ϵ_{geom} input beam
- Proton-driver-like but nasty circumference factor! (C=17)

$$C = \langle |\boldsymbol{B}| \rangle / \langle B_{\mathcal{Y}} \rangle$$

Table 1: Parameters of the FODO lattice.				
Energy range	800 MeV–12 GeV			
Orbit excursion	43.5 cm (vertical)			
k	$5{\rm m}^{-1}$			
B_0	0.5 T			
$B_{ m max}$	4.41 T (beam centre)			
	4.96 T (beam top)			
	5.33 T (whole magnet)			
Lattice	FODO			
F length	0.4 m			
D length	0.45 m			
Drift length	4 m			

distance=1023,2m time=0.00405439ms beam=100%

Scaling VFFAG Tracking

VFFAG Acceleration

2D Winding Model for Magnet

Application: Hadron Therapy?

- Low intensity but high rep-rate
 - Fixed field is a plus, space charge not too bad
- Small beams
 - The VFFAG magnet can be a narrow vertical slot
 - Less stored energy, smaller windings required
- Fixed tune allows slower acceleration, less RF
- Disadvantage: we still have the FFAG extraction-from-an-orbit-that-moves problem

II. Proton Driver Study

Motivation: ISIS Energy Booster

- FFAG of some sort (but with 2-4m drifts)
- Superconducting magnets
- Energy: 800MeV 12GeV
- Ring radius 52m (2x ISIS) could do 2.5x,3x
- Mean dipole field in magnets 0.47 4.14T
- 30% RF packing factor, 20% magnets
- Warm 6.2 7.3MHz RF
- Harmonic number 8 (10,12 in larger ring)

Why 12GeV? (= 2.5MW at 208uA)

- Existing 2RF is 2x11kV in 1.9707m module
 - -11.16kV/m * 20ms * c = 67GeV
- Assume 30% ring RF packing factor
 - 67GeV * 30% = 20GeV
- Assume $<\cos \phi> = 0.7 (\phi \sim 45^{\circ})$
 - -20GeV * 0.7 = 14GeV
- Finally, velocity goes from 0.84c to ~0.99c
 - 14GeV * 0.9 = 12.6GeV

Scaling (V)FFAG disease

- Defocussing is locked to reverse bending, as in scaling FFAGs → large circumference factor
- Searched for "lopsided" scaling lattices with good dynamic aperture [HB2010]
 - 10000 particles were tracked for 1km
 - Survival rate plotted on axes of lengths of "F" and "D" type magnets
 - This reveals both the lattice stability region and resonance stop-bands

Lattices can't be very lopsided

- Unfortunately in all cases the region of dynamic stability sticks very close to the F=D diagonal line
- The 2nd FDF stability region as used in PAMELA does not have enough dynamic aperture
- So basic scaling VFFAGs will always be big, with much reverse bending
 - Could edge focussing avoid reverse bends?

[HB2012]

VFFAG with Edge Focussing

one wants a mid-plane field $B_y = B_0 e^{ky} f(\zeta)$ but to obey Maxwell's equation $(\nabla \times \mathbf{B})_x = 0$, this has to be modified to $(B_u, B_z) = B_0 e^{ky} \left(f(\zeta) - \frac{\tau}{k} f'(\zeta), \frac{1}{k} f'(\zeta) \right).$

Scaling law:
$$y \mapsto y + \Delta y$$
, $(p, \mathbf{B}) \mapsto (p, \mathbf{B}) \mathrm{e}^{k\Delta y}$
 $z \mapsto z + \tau \Delta y$

Spiral Scaling VFFAG Magnet Field

TABLE I. Transverse Parameters for VFFAG Rings
--

$E_{k,\text{inj}}$	$800\mathrm{MeV}$				
$E_{k,\mathrm{ext}}$	$3\mathrm{GeV}$	$5\mathrm{GeV}$	$12\mathrm{GeV}$		
Mean radius		$52\mathrm{m}\ (2\times\mathrm{IS}$	IS)		
Superperiods	80 (superperiod is	s one cell)		
Cell length	4.0841 m				
Drift length	3.31'	74 m	$3.1257\mathrm{m}$		
	Magnet P	arameters			
Magnet length	0.760	67 m	$0.9584{ m m}$		
B_0	$0.5\mathrm{T}$		$0.4\mathrm{T}$		
k	$2.01{\rm m}^{-1}$		$2.2{\rm m}^{-1}$		
$ au = an heta_{ m edge}$	2.23		2.535		
$ heta_{ m edge}$	65.84°		68.47°		
Fringe length	$f = 0.3 \mathrm{m}$ in $B \propto \frac{1}{2} + \frac{1}{2} \tanh(z/f)$				
$B_{ m ext}$	$1.3069\mathrm{T}$	$2.0036\mathrm{T}^2$	$3.5274\mathrm{T}$		
$B_{\rm fringe}/B_{ m body}$	2.6941	x=4 cm	$2.6174_{x=2\mathrm{cm}}$		
$B_{ m max}$	$3.5210\mathrm{T}$	$5.3979\mathrm{T}$	$9.2326\mathrm{T}$		
Beam Optics					
$y_{\rm ext} - y_{\rm inj}$	$0.4780\mathrm{m}$	$0.6906\mathrm{m}$	$0.9895{ m m}$		
μ_u (per cell)	71.30°		71.29°		
μ_v	28.65°		19.56°		
Q_u (ring)	15.843		15.843		
Q_v	6.3	67	4.347		

Field Enhancement Factor

For 3,5GeV designs with k=2.01m⁻¹

Cell Beta Functions

- Doublet focussing nature
 - Visible in u,v planes
- FfD
 - Doublet controlled by τ
 - Singlet controlled by k
- Ring tune sensitivity:

$$\frac{\partial Q_{u,v}}{\partial k} = \begin{bmatrix} -8.49 \\ -94.46 \end{bmatrix} \quad \text{and} \quad \frac{\partial Q_{u,v}}{\partial \tau} = \begin{bmatrix} 39.92 \\ 119.82 \end{bmatrix}$$

s (metres)

TABLE II. Longitudinal parameters for the 12 GeV VFFAG. Peak voltage per turn and phase are linearly interpolated from the times given.

RF harmonic	h = 8 $6.179-7.321 MHz$
RF frequency	$6.179-7.321\mathrm{MHz}$
Cycle duration	$18.41\mathrm{ms}$
Rep. rate	$50\mathrm{Hz}$

Time (ms)	Voltage (kV)	Phase
0	150	10°
1	250	20°
2	350	25°
2.5	525	30°
3	800	35°
4	1000	40°
10	1000	55°
18.41 (extract)	1000	59.21°
20	1000	60°

12GeV VFFAG RF Programme

Compare with ISIS 1st harmonic RF

Longitudinal Intensity Effects

ISIS (1st harmonic) Intensity Effects

TABLE III. Intensity-dependent parameters for the ISIS single harmonic and 12 GeV VFFAG simulations run in series, for different numbers of protons injected into ISIS.

ISIS Protons In	$2.50\mathrm{e}13$	$2.75\mathrm{e}13$	$3.00\mathrm{e}13$		
ISIS μ A in	200.3	220.3	240.3		
ISIS transmission	90.54%	87.95%	85.98%		
ISIS protons out	2.26e13	2.42e13	2.58e13		
ISIS μ A out	181.3	193.7	206.6		
ISIS power (kW)	145	155	165		
VFFAG transmission		100%			
VFFAG power (MW)	2.18	2.32	2.48		
ISIS Peak Intensities					
Bunching factor	0.154	0.150	0.151		
Space charge ratio	-0.301	-0.305	-0.311		
$\Delta Q_{x,y}$	-0.499	-0.544	-0.580		
VFFAG Peak Intensities					
Bunching factor	0.0188	0.0190	0.0190		
Space charge ratio	-0.211	-0.257	-0.278		
ΔQ_u	-0.219	-0.240	-0.254		
ΔQ_v	-0.395	-0.434	-0.458		

VFFAG Bunch Duration Evolution

VFFAG Bunch Energy Spread

Proton Driver VFFAG Next Steps

- RF programme promising
 - But cavities won't fit in diagonal-shaped drifts!
- Adapt Yoshi Mori's idea of insertions in scaling FFAGs [Mori, FFAG11] to scaling VFFAGs

- Arc section using magnets with edge focussing
- Straight section using FODO lattice, long drifts
- Then 2+1/2.5D simulation with space charge

III. Isochronous Machines

Tilted Orbit Excursion

• Any angle θ is allowed, not just vertical!

– Quadrupole field will rotate by $\theta/2$

Fig. 1. Schematic section of accelerator with vertically increasing field; 1) ring magnet; 2) excitor windings for directing and focusing fields; 3) vacuum chamber; A) relativistic region; B) ultrarelativistic region.

← Teichmann (1962) also had idea

Analysis without Weak Focussing

- Mean radius $r = \beta R$ where $R = c/2\pi f$
- Mean $B_y = p/qr = m\beta\gamma c/q\beta R = \gamma(mc/qR) = \gamma B_0$
- For optics to scale, B'l/p = const. (B'=dB_v/ds)
 - $B'I/p = B'r\Theta/m\beta\gamma c = B'\beta R\Theta/m\beta\gamma c = (B'/\gamma)(R\Theta/mc)$
 - $-B' \propto \gamma \propto B_{y}$, therefore $B_{y} = B_{0}e^{s/S}$ and $s = S \ln \gamma$
 - ...for some scaling length S=1/k
- To fix strong focussing tune, B_y must be exponential along the curved orbit excursion!

Lower Velocity Bound

• Haven't yet used fact β , r are related to γ , s, B_{ν}

•
$$r = \beta R = R\sqrt{1 - \gamma^{-2}} = R\sqrt{1 - e^{-2s/S}}$$

s is arc length so dr/ds ≤ 1

- Differentiate: dr/ds =
$$\frac{Re^{-2s/S}}{S\sqrt{1-e^{-2s/S}}} = \frac{R\gamma^{-2}}{S\beta} = (R/S)/\beta\gamma^2$$

- Therefore $\beta \gamma^2 \ge R/S$ for scaling isoch. VFFAGs
 - Equality at horizontal excursion (minimum energy)
 - $dr/ds \rightarrow 0$ as $v \rightarrow c$ so asymptotically vertical
 - Compact machines require large R/S, high energy

Lower Energy Bounds for Protons

Minimum Proton Energy	β	Maximum R/S = $\beta \gamma^2$
100 MeV	0.428	0.52
200 MeV	0.566	0.83
500 MeV	0.758	1.78
1 GeV	0.875	3.73
2 GeV	0.948	9.29

- For muons or especially electrons, things are much easier!
- Can't join a cyclotron smoothly onto a scaling isochronous VFFAG with a different tune

Orbit Excursion Shape (R/S=2)

Staged Example

 If injector is PSI's 2.2mA 590MeV cyclotron, this two-VFFAG booster yields 13.2MW CW protons at 6GeV

Prospects for Isochronous VFFAGs

- I don't see these beating cyclotrons at ≤ 1 GeV
 - ...for protons.
 - Electrons: alternative to RCS?
 - Muons: alternative to non-scaling FFAGs?
- Protons at many GeV are potentially interesting for exotic particle factories
 - E.g. pbars, in terms of raw yield, though I believe most capture schemes assume a non-CW beam

IV. Three-Lens Horizontal FFAGs

Two Magnet Families Only

Two-Lens Stability Diagram

Three-Lens Lattice Advantages

- Extended energy range non-scaling FFAGs
 - Allows gradient reversals e.g. FFD changing to FDD
- Fixed-tune non-scaling FFAGs
 - With at least three free gradients, you can satisfy
 - $dQ_x/dp = dQ_y/dp = 0$
 - ...and not become a scaling FFAG!

Three-lens:

3D "Necktie" Diagram

Three-Lens Stability Regions

Loci of Fixed Tune

Change in Nature of Lattice

[IPAC11] attempt at 3-lens VFFAG

 Maybe somehow all magnets can bend the right way?

$$B_{y,n}(0,y) = B_0 e^{ky} (1 + a\cos(wy + \varphi_n))$$

Didn't work

[PAC09] Optimiser designed FFAG

- Before the VFFAG idea, I tried to make a nonscaling (horizontal) FFAG 12GeV proton driver
- Used the Muon1 optimiser (evolutionary algorithm) on field polynomials B_{v.n}(x)
 - Previously used on neutrino factory
 - http://stephenbrooks.org/muon1/ distributed project
- Scored 0-100 for percentage of energy range with stable closed orbits
- Didn't work

FFAGs not working in more detail

FODO cell not working:

Doublet not working:

(2013) Combine the two ideas

- Use the optimiser on a 3-lens horizontal FFAG
 - Just add a third magnet to the proton driver cell
- Score 0-100 for energy range with stable orbit
 - and because we're being optimistic,
- Score 100-200 for flat cell tunes
 - score = 200 100 ($Q_{x,max} Q_{x,min} + Q_{y,max} Q_{y,min}$)
 - Provided the full energy range is stable
- Final score: 196.601

Tune Variation, score = 176.379

Tune Variation, score = 185.216

Tune Variation, score = 191.844

Tune Variation, score = 194.263

Tune Variation, score = 196.601

Magnet Field Profiles

Magnetic Lattice with Energy

Well that was fun but so what?

- Door opened to non-scaling FFAGs with wide momentum range and properly fixed tunes
 - Either via global optimisation
 - Could apply to FFAG gantry or insertion problems
 - Or Grahame Rees's integration technique using the chromaticity (solve $dQ_{x,y}/dp = 0$ for B''_n)
- This "proton driver" design needs more magnets bending the right way at 12GeV
 - Advance the pseudophase?

V. Proton Omni-Ring

Configurable Proton R&D Ring

- Magnets with independently-powered coils can provide nearly arbitrary combinations of multipoles up to a certain order
- May be used to make a general-purpose FFAG and synchrotron test ring for beam dynamics studies, if apertures reasonably large
 - Good fit for FETS, 3MeV, H⁻, space in R9 (RAL)
- Normal-conducting, simulated with Poisson

Possible Parameters

- Note: 3MeV = 75.1 MeV/c for protons/H⁻
 - 4x as hard to bend as EMMA electrons already
- 0.2T dipole at 40% packing → 6.3m diameter
 - Compare EMMA at 5.3m
 - 24 magnets → 33cm magnet, 49cm drift per cell
 - Fits in R9, can branch off from >3MeV linac test stand (CH structure tanks etc.)
- Test: space charge, injection, FFAGs, halo...

Omni-Ring Magnet

- Dodecapole with separately-powered coils
- Calibrated to produce multipole fields

Geometry Parameters (1/12 magnet)

- Aperture = 2a, coil thickness = c, yoke = e, etc.
- f=pole fraction, g=coil fraction, f+g+h=1

Compare ISIS EPB2 magnet "Q11"

- 235A in 10x10mm coils
 - 2.35A/mm² in coil+water+insulator overall
- 5.4kW total power (water-cooled copper)
- 105mm radius physical aperture
 - 80mm radius good field ±0.5%
- 3.76T/m * 105mm = 0.395T pole tip field
 - Spec says up to 1.4T flux in return arms

Before Optimisation (0.0158 T)

After Optimisation (0.1141 T)

Field Quality (Dipole case)

Currents just from cos(θ) rule

Magnet Practicalities

- Neil Marks used this idea for the corrector magnets of SRS at Daresbury Laboratory (UK)!
 - Could actually be used on ISIS too
- Can it be done cheaply/practically?
 - Needs many-channel power supply
 - Maybe current density can go higher?
- Calibration is an interesting problem
 - Use standardised test rig for all magnets
 - Integrate magnet field sensors into poles?

mi i an i i an i i

Other Ideas & Issues

- Ring can test chopping, injection painting, variable space charge levels, arbitrary tune settings, magnet nonlinearities
- Could do sequential single-turn extractions
 - Beam "movie"
 - Purpose-built halo diagnostic in extraction line?
- "Optical bench" positioning setup, bellows??
- Realisation of cheap ring at 3MeV hinges on whether H⁻ stripping possible (foils too thin?)

The End: FFAG Master Table

2013 Update

Table 1: Classification of FFAGs and their characteristics. Uppercase 'Y' indicates property is always true, lowercase 'y' that it is achievable in some cases. '3+' means three or more lenses per cell are required.

Type of FFAG	Fixed tunes	Wide E range	Isoch- ronous	Small ring
Scaling	Y	Y	N	N
Non-scaling	3+	У	y	y^{\dagger}
Linear n.s.	N	N	y(quasi)	У
Vertical s.	Y	Y	N	Nbut spiral better
V. n.s.	3+	?	?	?
Linear v.n.s. [‡]	?	?	?	?
Skew	У	У	У	?

[†]Two 'y's may not be achievable simultaneously.

[‡]Linear field VFFAG suggested by D.J. Kelliher.