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1 Integral of Gaussian times Polynomial

Series solutions involving Gaussian-smoothed sources may involve integrating a slightly-distorted
Gaussian function, which can be expressed as a Gaussian multiplied by a polynomial or series.
The 1D Gaussian function centred at x = 0 is f1,σ(x) = 1

σ
√
2π
e−x

2/2σ2
and obeys

∫∞
−∞ f1,σ(x) dx =

1. First, calculate some derivatives:

d

dx
f1,σ = − 1

σ2
xf1,σ ⇒ d

dx
[xnf1,σ] = nxn−1f1,σ −

1

σ2
xn+1f1,σ.

Let

In =

∫ ∞
−∞

xnf1,σ(x) dx,

so that I0 = 1. Integrating both sides of the formula for d
dx [xnf1,σ] gives

[xnf1,σ]∞−∞ = nIn−1 −
1

σ2
In+1.

The left hand side is zero because a Gaussian decreases faster than any polynomial can increase
as x→ ±∞. The n = 0 case gives I1 = 0, which can also be seen because x1 is an odd function.
The n+ 1 cases give a recurrence

In+2 = σ2(n+ 1)In,

which can be solved for the even numbers to give the general solution

I2n =
(2n)!

n!2n
σ2n, I2n+1 = 0.

For the 3D spherical Gaussian f3,σ(x) = 1
(σ
√
2π)3

e−|x|
2/2σ2

, the relationship f3,σ(x, y, z) =

f1,σ(x)f1,σ(y)f1,σ(z) can be used to evaluate it multiplied by 3-variable polynomial terms:∫
xiyjzkf3,σ(x) d3x =

∫ ∞
−∞

xif1,σ(x) dx

∫ ∞
−∞

yjf1,σ(y) dy

∫ ∞
−∞

zkf1,σ(z) dz = IiIjIk.

This is only nonzero when all of i, j, k are even.
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2 Integral of Gaussian of Another Function

If the argument of the Gaussian function is another function of position, integration by substi-
tution may be used: ∫ ∞

−∞
f1,σ(h(x)) dx =

∫ ∞
−∞

f1,σ(h)
dx

dh
dh,

which works best if h(x) is invertible, otherwise multiple solutions for h will have to be summed
to cover all x in the original integral. As the Gaussian f1,σ peaks near h = 0, a series expansion
of dx

dh may be used, which makes each term an integral of the form in the previous section.

More explicitly, suppose h(x) is a bijection and h(x0) = 0. The Taylor expansion of h is

h(x) = h(x0) +
∞∑
n=1

1

n!
h(n)(x0)(x− x0)n.

Since the first nonzero term is in (x− x0)1, the pth power of h(x) will have a series starting at
(x− x0)p for some coefficients:

h(x)p =

∞∑
n=p

cpn(x− x0)n, where c1n =
1

n!
h(n)(x0), cp+1,n =

n−1∑
i=p

cpic1,n−i.

This helps construct the inverse of this series that satsifies

x− x0 =
∞∑
n=1

anh(x)n =
∞∑
n=1

an

∞∑
i=n

cni(x− x0)i =
∞∑
i=1

(
i∑

n=1

ancni

)
(x− x0)i.

The coefficients an may be found by ‘long division’, where each successive an is chosen to make
the coefficient of (x− x0)n correct, starting with

a1c11 = 1 ⇒ a1 =
1

c11

and continuing for n > 1

n∑
i=1

aicin = 0 ⇒ an =
−
∑n−1

i=1 aicin
cnn

.

Taking the derivative of the resulting series with respect to h(x) gives

dx

dh
=
∞∑
n=1

nanh
n−1

and now the integral may be evaluated using results from the previous section:∫ ∞
−∞

f1,σ(h(x)) dx =

∫ ∞
−∞

f1,σ(h)
∞∑
n=1

nanh
n−1 dh =

∞∑
n=1

nanIn−1.
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