Integrals of Distorted Gaussian Functions

Stephen Brooks

May 1, 2020

1 Integral of Gaussian times Polynomial

Series solutions involving Gaussian-smoothed sources may involve integrating a slightly-distorted Gaussian function, which can be expressed as a Gaussian multiplied by a polynomial or series. The 1D Gaussian function centred at $x=0$ is $f_{1, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}$ and obeys $\int_{-\infty}^{\infty} f_{1, \sigma}(x) \mathrm{d} x=$ 1. First, calculate some derivatives:

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f_{1, \sigma}=-\frac{1}{\sigma^{2}} x f_{1, \sigma} \quad \Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left[x^{n} f_{1, \sigma}\right]=n x^{n-1} f_{1, \sigma}-\frac{1}{\sigma^{2}} x^{n+1} f_{1, \sigma} .
$$

Let

$$
I_{n}=\int_{-\infty}^{\infty} x^{n} f_{1, \sigma}(x) \mathrm{d} x,
$$

so that $I_{0}=1$. Integrating both sides of the formula for $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{n} f_{1, \sigma}\right]$ gives

$$
\left[x^{n} f_{1, \sigma}\right]_{-\infty}^{\infty}=n I_{n-1}-\frac{1}{\sigma^{2}} I_{n+1} .
$$

The left hand side is zero because a Gaussian decreases faster than any polynomial can increase as $x \rightarrow \pm \infty$. The $n=0$ case gives $I_{1}=0$, which can also be seen because x^{1} is an odd function. The $n+1$ cases give a recurrence

$$
I_{n+2}=\sigma^{2}(n+1) I_{n},
$$

which can be solved for the even numbers to give the general solution

$$
I_{2 n}=\frac{(2 n)!}{n!2^{n}} \sigma^{2 n}, \quad I_{2 n+1}=0
$$

For the 3D spherical Gaussian $f_{3, \sigma}(\mathbf{x})=\frac{1}{(\sigma \sqrt{2 \pi})^{3}} e^{-|\mathbf{x}|^{2} / 2 \sigma^{2}}$, the relationship $f_{3, \sigma}(x, y, z)=$ $f_{1, \sigma}(x) f_{1, \sigma}(y) f_{1, \sigma}(z)$ can be used to evaluate it multiplied by 3 -variable polynomial terms:

$$
\int x^{i} y^{j} z^{k} f_{3, \sigma}(\mathbf{x}) \mathrm{d}^{3} \mathbf{x}=\int_{-\infty}^{\infty} x^{i} f_{1, \sigma}(x) \mathrm{d} x \int_{-\infty}^{\infty} y^{j} f_{1, \sigma}(y) \mathrm{d} y \int_{-\infty}^{\infty} z^{k} f_{1, \sigma}(z) \mathrm{d} z=I_{i} I_{j} I_{k} .
$$

This is only nonzero when all of i, j, k are even.

2 Integral of Gaussian of Another Function

If the argument of the Gaussian function is another function of position, integration by substitution may be used:

$$
\int_{-\infty}^{\infty} f_{1, \sigma}(h(x)) \mathrm{d} x=\int_{-\infty}^{\infty} f_{1, \sigma}(h) \frac{\mathrm{d} x}{\mathrm{~d} h} \mathrm{~d} h
$$

which works best if $h(x)$ is invertible, otherwise multiple solutions for h will have to be summed to cover all x in the original integral. As the Gaussian $f_{1, \sigma}$ peaks near $h=0$, a series expansion of $\frac{\mathrm{d} x}{\mathrm{~d} h}$ may be used, which makes each term an integral of the form in the previous section.

More explicitly, suppose $h(x)$ is a bijection and $h\left(x_{0}\right)=0$. The Taylor expansion of h is

$$
h(x)=h\left(x_{0}\right)+\sum_{n=1}^{\infty} \frac{1}{n!} h^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n} .
$$

Since the first nonzero term is in $\left(x-x_{0}\right)^{1}$, the $p^{\text {th }}$ power of $h(x)$ will have a series starting at $\left(x-x_{0}\right)^{p}$ for some coefficients:

$$
h(x)^{p}=\sum_{n=p}^{\infty} c_{p n}\left(x-x_{0}\right)^{n}, \quad \text { where } \quad c_{1 n}=\frac{1}{n!} h^{(n)}\left(x_{0}\right), \quad c_{p+1, n}=\sum_{i=p}^{n-1} c_{p i} c_{1, n-i} .
$$

This helps construct the inverse of this series that satsifies

$$
x-x_{0}=\sum_{n=1}^{\infty} a_{n} h(x)^{n}=\sum_{n=1}^{\infty} a_{n} \sum_{i=n}^{\infty} c_{n i}\left(x-x_{0}\right)^{i}=\sum_{i=1}^{\infty}\left(\sum_{n=1}^{i} a_{n} c_{n i}\right)\left(x-x_{0}\right)^{i} .
$$

The coefficients a_{n} may be found by 'long division', where each successive a_{n} is chosen to make the coefficient of $\left(x-x_{0}\right)^{n}$ correct, starting with

$$
a_{1} c_{11}=1 \quad \Rightarrow \quad a_{1}=\frac{1}{c_{11}}
$$

and continuing for $n>1$

$$
\sum_{i=1}^{n} a_{i} c_{i n}=0 \quad \Rightarrow \quad a_{n}=\frac{-\sum_{i=1}^{n-1} a_{i} c_{i n}}{c_{n n}}
$$

Taking the derivative of the resulting series with respect to $h(x)$ gives

$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\sum_{n=1}^{\infty} n a_{n} h^{n-1}
$$

and now the integral may be evaluated using results from the previous section:

$$
\int_{-\infty}^{\infty} f_{1, \sigma}(h(x)) \mathrm{d} x=\int_{-\infty}^{\infty} f_{1, \sigma}(h) \sum_{n=1}^{\infty} n a_{n} h^{n-1} \mathrm{~d} h=\sum_{n=1}^{\infty} n a_{n} I_{n-1}
$$

