Integrals of Polynomial Functions over Spheres and Balls

Stephen Brooks

June 27, 2023

1 Definitions and Problem

Let $B_{n}=\{\mathbf{x}:|\mathbf{x}| \leq 1\}$ be the unit n-dimensional ball and $S_{n-1}=\{\mathbf{x}:|\mathbf{x}|=1\}$ be the unit ($n-1$)-dimensional sphere. Note that this sphere is the surface of the ball: $S_{n-1}=\partial B_{n}$.

We want to evaluate the integral

$$
I_{a_{1} \ldots a_{n}}^{B_{n}}=\int_{B_{n}}\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right) \mathrm{d}^{n} \mathbf{x}
$$

of a general monomial term over the n-dimensional ball. It will be helpful to define a similar integral

$$
I_{a_{1} \ldots a_{n}}^{S_{n-1}}=\int_{S_{n-1}}\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right) \mathrm{d}^{n-1} \mathbf{x}
$$

over the surface of the sphere. Finally, an integral over all space but weighted by an n dimensional unit Gaussian distribution will also be useful:

$$
I_{a_{1} \ldots a_{n}}^{g_{n}}=\int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right) \frac{1}{\sqrt{2 \pi}} n^{-\frac{1}{2}|\mathbf{x}|^{2}} \mathrm{~d}^{n} \mathbf{x}
$$

2 Separability of Gaussian Integral

The Gaussian integrand can be written as a product

$$
I_{a_{1} \ldots a_{n}}^{g_{n}}=\int_{\mathbb{R}^{n}}\left(\prod_{i=1}^{n} x_{i}^{a_{i}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{i}^{2}}\right) \mathrm{d}^{n} \mathbf{x} .
$$

Since each term in the product only depends on x_{i}, this is a separable integral that is the product of one-dimensional integrals:

$$
I_{a_{1} \ldots a_{n}}^{g_{n}}=\prod_{i=1}^{n} \int_{\mathbb{R}} x_{i}^{a_{i}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{i}^{2}} \mathrm{~d} x_{i}=\prod_{i=1}^{n} I_{a_{i}}^{g_{1}} .
$$

3 Values of One-Dimensional Gaussian Integral $I_{a}^{g_{1}}$

The one-dimensional Gaussian integrals can be evaluated by noting

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[x^{a} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\right]=\left(a x^{a-1}-x^{a+1}\right) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

and therefore by integrating both sides over \mathbb{R},

$$
0=a I_{a-1}^{g_{1}}-I_{a+1}^{g_{1}}
$$

The recurrence of values can be started by noting $I_{0}^{g_{1}}=1$ because the Gaussian is normalised and $I_{1}^{g_{1}}=0$ because it is the integral of an odd function. Writing the recurrence as $I_{a+2}^{g_{1}}=(a+1) I_{a}^{g_{1}}$ makes it clear that $I_{a}^{g_{1}}=0$ for a odd. For even values,

$$
I_{2}^{g_{1}}=1, \quad I_{4}^{g_{1}}=3, \quad I_{6}^{g_{1}}=3 \times 5, \quad I_{8}^{g_{1}}=3 \times 5 \times 7, \quad \cdots
$$

giving the general formula

$$
I_{2 a}^{g_{1}}=\prod_{b=1}^{a}(2 b-1)=(2 a-1)!!=\frac{(2 a)!}{2^{a} a!}
$$

3.1 Integrals on the Half Real Line $I_{a}^{h_{1}}$

The following calculations will also need 1D Gaussian integrals on the half real line defined by

$$
I_{a}^{h_{1}}=\int_{0}^{\infty} x^{a} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \mathrm{~d} x
$$

Starting as before but integrating over $[0, \infty)$ gives

$$
\left[x^{a} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}\right]_{x=0}^{\infty}=a I_{a-1}^{h_{1}}-I_{a+1}^{h_{1}}
$$

The left hand side is equal to $\frac{-1}{\sqrt{2 \pi}}$ when $a=0$ and zero otherwise. The recurrence can still be rewritten $I_{a+2}^{h_{1}}=(a+1) I_{a}^{h_{1}}$ valid for $a \geq 0$. The original $a=0$ case gives

$$
\frac{-1}{\sqrt{2 \pi}}=-I_{1}^{h_{1}} \quad \Rightarrow \quad I_{1}^{h_{1}}=\frac{1}{\sqrt{2 \pi}}
$$

For even functions we have $I_{2 a}^{h_{1}}=\frac{1}{2} I_{2 a}^{g_{1}}$ and in particular $I_{0}^{h_{1}}=\frac{1}{2}$. The recurrence gives the general formulae

$$
I_{2 a}^{h_{1}}=\frac{1}{2}(2 a-1)!!\quad \text { and } \quad I_{2 a+1}^{h_{1}}=\frac{1}{\sqrt{2 \pi}} \prod_{b=1}^{a} 2 b=\frac{1}{\sqrt{2 \pi}}(2 a)!!=\frac{1}{\sqrt{2 \pi}} 2^{a} a!
$$

4 Relation of Gaussian to Spherical Integral

The Gaussian integrand can also be split into parts that depend on radius $r=|\mathbf{x}|$ and parts that do not:

$$
I_{a_{1} \ldots a_{n}}^{g_{n}}=\int_{\mathbb{R}^{n}} \frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{1}{2} r^{2}} r^{\sum a_{i}}\left(\prod_{i=1}^{n}\left(\frac{x_{i}}{r}\right)^{a_{i}}\right) \mathrm{d}^{n} \mathbf{x}
$$

Defining $\mathbf{x}=r \mathbf{u}$ so that $\mathbf{u} \in S_{n-1}$ gives $\mathrm{d}^{n} \mathbf{x}=r^{n-1} \mathrm{~d} r \mathrm{~d}^{n-1} \mathbf{u}$ and

$$
\begin{aligned}
I_{a_{1} \ldots a_{n}}^{g_{n}} & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{1}{2} r^{2}} r^{\sum a_{i}} r^{n-1} \mathrm{~d} r \int_{S_{n-1}}\left(\prod_{i=1}^{n} u_{i}^{a_{i}}\right) \mathrm{d}^{n-1} \mathbf{u} \\
& =\frac{1}{\sqrt{2 \pi}^{n-1} I_{n-1+\sum a_{i}} I_{a_{1} \ldots a_{n}}^{S_{n}}} .
\end{aligned}
$$

5 Evaluating the Spherical Integral

By the formula in the previous section,

$$
I_{a_{1} \ldots a_{n}}^{S_{n-1}}=\frac{\sqrt{2 \pi}^{n-1} I_{a_{1} \ldots a_{n}}^{g_{n}}}{I_{n-1+\sum a_{i}}^{h_{1}}} .
$$

The separability of the Gaussian integrals allows this to be written with only $I_{a}^{g_{1}}$ and $I_{a}^{h_{1}}$ terms:

$$
I_{a_{1} \ldots a_{n}}^{S_{n-1}}=\sqrt{2 \pi}^{n-1} \frac{\prod_{i=1}^{n} I_{a_{i}}^{g_{1}}}{I_{n-1+\sum a_{i}}^{h_{1}}}
$$

6 Evaluating the Ball Integral

Integrating over a smaller sphere of radius r will introduce a factor of r^{n-1} from the change in surface area and a factor of $r^{\sum a_{i}}$ from the change in the monomial term itself. Thus,

$$
I_{a_{1} \ldots a_{n}}^{B_{n}}=\int_{0}^{1} r^{n-1+\sum a_{i}} I_{a_{1} \ldots a_{n}}^{S_{n-1}} \mathrm{~d} r=\frac{1}{n+\sum a_{i}} I_{a_{1} \ldots a_{n}}^{S_{n-1}} .
$$

Using the formula from the previous section, this can be written in terms of $I_{a}^{g_{1}}$ and $I_{a}^{h_{1}}$:

$$
I_{a_{1} \ldots a_{n}}^{B_{n}}=\frac{\sqrt{2 \pi^{n-1}}}{n+\sum a_{i}} \frac{\prod_{i=1}^{n} I_{a_{i}}^{g_{1}}}{I_{n-1+\sum a_{i}}^{h_{1}}}
$$

