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1 Introduction

Particle beam focussing and other confined physical systems often obey the equation & = kz,
where k < 0 implies stable motion. A constant negative value of k yields simple harmonic motion
(constant focussing), while positive values give unstable (defocussing) motion. Alternating-
gradient focussing is the surprising principle that if k(t) is varied periodically, the overall motion
can sometimes be stable even if the average value of k is zero or negative. It is used where
focussing in one direction implies defocussing in one or more other directions, such as with
electromagnetic fields in free space that have to satisfy V - E = 0 and similar.

2 Equation of Motion and Time Rescaling

Sinusoidally-varying focussing is a natural choice in some experiments (Paul-type ion traps for
example). The equation
¥ = ksin(wt)x

for some constant k determines the motion. Rescaling time with y(¢) = (%) and §j(¢) = Ji(L)
and evaluating the original equation at time % gives

W2ij(t) = i <t) — ksin(b)e <t> — ksin(t)y(t)

w w

= j = Esm(t)y.

This only has one parameter, % So, without loss of generality, the remainder of this note will
study behaviour of the equation
& = ksin(t)z

for constant k.

3 Linear Dynamics

The equation of motion is second order and linear in x, so values at later times satisfy



for some functions a, b, ¢, d. Differentiating both sides gives

I T A b,(t)H:;m)]
ksin(t)a(t) |~ | 0 0 do) | [ 400
= Lty wamiowr | [30] =[50 do ] [50)]

This gives the time derivatives of a, b, ¢, d:
a=c, b=d, ¢=ksin(t)a, d=ksin(t)b.

At t = 0 the matrix is just the identity, so the initial conditions are

4 Effective Focussing Strength

The equation of motion is periodic in time, so solutions can be shifted by multiples of 27. This

means once the matrix
M= a(2m)  b(2m)
| e(27) d(27)

is obtained, it can evolve conditions at t = 27n to t = 27(n + 1) for any integer n. Thus, the
long term dynamics from ¢ = 0 to ¢t = 27n are determined by M".

For stable dynamics, the two eigenvalues of M must be on the complex unit circle e** for
some phase advance ¢. The trace of a matrix is equal to the sum of its eigenvalues, so

tr(M) = a(2m) + d(2m) = 2 cos(¢).
The value of this trace determines the strength of the focussing, with tr(M)=2 (¢ = 0) meaning
no focussing and tr(M)=-2 (¢ = m) meaning the maximum focussing possible before instability.

This note will derive an expression for tr(M) and ¢ as functions of the time-rescaled k. This
gives the long-term dynamical frequencies as a function of applied focussing strength.

It is also possible to find an ‘effective focussing strength’, which is the constant focusing
strength (simple harmonic motion) that would give the same frequency:

&= —kegx = == Asin(\/kegt)+ Bcos(\/kegt) = \keg2m = 0.

5 Expansion in Powers of £

The time derivatives of a, b, c,d seem to form a coupled system but expanding in powers of k
makes the calculation easier. If a = Y 07  a,k™ and similarly for b, ¢, d, then equating powers of
k gives

n = Cny by =dp, = sin(t)an—1, d, = sin(t)bp—1,

with ¢g = dg = 0. Writing the integrals explicitly gives, for n > 1,

t t t t
ap = / cn dt, b, = / dy, dt, Cp = / sin(t)an—1 dt, d, = / sin(t)by—1 dt.
0 0 0 0
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The initial values imply that ¢g = 0 and dy = 1 for all ¢ because these have derivative zero.
There is also

t t
ag—l—i-/Codt—l and bo—/dodt—t.
0 0
Then ¢; =1 — cos(t) and dy = sin(t) — tcos(t), and so on, alternating between a, b and ¢, d.

Successive approximations to the phase advance can be calculated from

2cos(¢p) = tr(M) = a(27) + d(27) = Z(an(%r) + dp(2m))k".

n=0

ag b() . 1 ¢
Co do - 01

is just the transfer matrix of a drift with no focussing force, as expected for the k% term.

Note that

6 Start of Calculation

We already have the k° coefficient

CLQ(?’/T)—I-CZQ(Q?T) =14+1=2.

ay =t —sin(t)
by = 2 — tsin(t) — 2 cos(t)
The k' coefficient is
a1 (2m) + dqy(27) = 27 + (—27) = 0.
¢y = —5t +sin(t) + 3 sin(2¢t) — t cos(t)
dy = & — $t% + Jtsin(2t) — 2 cos(t) + 3 cos(2t)
as =2 — 22 —tsin(t) + 1 sin?(t) — 2 cos(t)
The k? coefficient is

ap(27) + do(27) = (—7%) + (=) = —272.

The integrals are probably best done by computer algebra system beyond this point. Al-
though, approximating tr(M) ~ 2 — 272k? already gives a reasonable approximation to the real
value as shown in Figure

Odd powers of k have coefficients of zero because replacing ksin(¢) by —ksin(t) in the
differential equation just shifts the time axis by 7, so long term behaviour should be identical
on changing the sign of k, making the phase advance an even function of k.

7 General Terms

It appears the general terms look like p(t) sin(mt) + ¢(t) cos(mt) for some polynomials p, ¢ and
m > 0. The m = 0 cos term gives the non-sinusoidal polynomial parts. The integral of this term



Trace

model {up to k*2)

Figure 1: Approximation of tr(M) up to the k? term.

also has the form P(t)sin(mt) + Q(t) cos(mt) where the new polynomials P, () can be found by
a recurrence relation. Write p(t) = Zf:[:o ppt™ and similarly for ¢, P, @, then

%(P(t) sin(mt) + Q(t) cos(mt)) = ZnN:() %(Pnt” sin(mt) + Qnt™ cos(mt))
= SN (Pt — mQut™) sin(mt) + (nQut" ' + mPyt™) cos(mt)
= SN (04 1) Py — mQp )t sin(mt) + ((n + 1)Qpi1 + mPy)t™ cos(mt)
= Zivzo pnt" sin(mt) + gnt"™ cos(mt),
where by convention, Py11 = @Qn+1 = 0. Equating coefficients gives

Pn = (n+1)Pn+1 _anv qn = (n+1)Qn+l +mP,,

therefore . .
Pnzi(Qn_(n'i_l)Qn—&—l)a ani((n"i_l)Pn—‘rl_pn)-
m m
The recurrence can be started with Py = & and Qn = —2X then evaluated downwards to

dn—1

n = 0. The exception is m = 0 when the usual polynomial integration P, = panl and Q, =

should be used.

Besides integrating, the other operation that happens in the calculation is multiplication by
sin(t). This can be dealt with by the trigonometrical product formulae

sin(t) sin(mt) = %cos((m —1)t) — %cos((m + 1)t)

sin(t) cos(mt) = —% sin((m — 1)t) + %sin((m + 1)t).

Overall, a matrix entry function is represented on a computer as

M M N
an = Z Danm (t) sin(mt) + qq,m(t) cos(mt) = Z Zpanmjtj sin(mt) + qa,m;t’ cos(mt)
m=0 m=0 j=0

with arrays of coefficients (p, q)(4p.c,d)omj- For n = 0, the upper limits are N = 1 and M = 0
and these can increase by one each time n does.



8 Computer Algebra Calculation

Using the general formulae above, a computer algebra calculation gives the trace as

tr(M) = 2cos(¢) = a(2m) + d(27) =
(+2) K
+ (—27?) k?
+ (-2 4 4) A
(R ¢ Bt )

16824665 2 | 24329 4 _ 5 8
+( 663552 + o2 T 487r + 12607T )k
104550461873 2 | 25241465 4 _ 14977 6 8 110\ 1,10
+ (_ 1194393600 + 990656 ¥ — 345607 T 10087T 56700 " ) k
1383860829361699 2 | 343096621171 4 _ 7069153 6 | 35579 8 5 10 1 12\ .12
+( 4209816960000 + “l66361600 © — 39813127 T+ 14515207 — 362887 T 3742200 )k
n ( 29280023058538018009 2 | 150905495534989 /4 131109204649 /6 |
23702740992000000 806215680000 17915904000 *

9427513 8 10301

10 12 1 14\ .14 16
83607552 13063680 " +3991687T 340540200 )k + O(k™°).

The final k' term is of similar magnitude to the double precision rounding error, so this should
suffice for most numerical calculations.

9 Conclusion

If the polynomial above is donated T'(k) ~ tr(M) = 2 cos(¢), then the phase advance per period
can be calculated with ¢ ~ arccos(3T'(k)).

The effective focussing strength satisfies v/keg2m = ¢ and so

Finally7 considering the non-time-rescaled equation of motion & = k sin(wt)z, the subtitutions
k « -5 and 27 < 27/w give

2T

fot =~ (arccos (ir (;2)))2.
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