How to Program in C

Getting Started

Download the LCC-Win32 compiler system from the URL http://www.cs.virginia.edu/~lcc-win32, remembering to get the “LCC-Win32 Compiler System” and the “LCC-Win32 users’ manual and technical documentation”. The latter is actually quite helpful for most of the basic commands you are likely to use, although the English is sometimes a bit odd because Jacob Navia (who wrote the Win32 port of this compiler system) is apparently French. There is also a “Windows API documentation” but it is very large (about 13MB) and I only find very occasional use for it. On the other hand, it does contain (I think) all the Win32 functions that are at your disposal, so if you want to write the next generation of killer virus, advanced network application or odd program that allows you to use your monitor sideways, this is the place to shop.

The LCC system will take quite a while to install, as it seems to have to compile bits of itself in order to work – don’t ask me why because I haven’t a clue and I don’t know exactly what the files it is fiddling with are anyway. Being patient, however, you eventually find that the installation does finish and if you’re lucky you will be able to find an icon on your computer somewhere labelled “WEdit”. Run this and you will be in the editor.

To start programming, you unfortunately have to set up a project and configure a few things. This is nasty to figure out for yourself so here is a step-by-step description of how I do it:

[Author feels a sudden painful tingling sensation and realises that his room is far too hot. Gets up rapidly and «dong» hits head on lampshade while trying to open the window. Considers suing Anglepoise.]

1. Before you do anything in WEdit, create a directory for your project and put a blank text file in it. Rename this file to something.c, replacing the word “something” by something more relevant to your project if you so desire. This will be the source-code file for your project.

2. From the menu bar, select Project (Create…

3. A small, enigmatic box will appear asking you for something called a “Project Name”. This will be the name of the .exe file the compiler will create and also the name of a few other files LCC will spew out, so choose something fairly short and sensible. Above all, don’t put spaces in it: this will cause LCC to be very sick indeed.

4. A more sensible box appears. Set “Path/Working directory” to the directory you created in step 1 and no matter how hard LCC tries to fill in the box below with the same path with “\lcc” appended to it, don’t let it. Ruthlessly delete the offending segment so that you won’t have the hassle of having to jog between windows when dealing with your project.

5. Set “Type of project” to either “Windows executable” or “Console application”. Setting it to “Console application” makes life simpler in some ways but does not allow the use of any decent graphics (DirectX is Windows only). However, if this is your first project or you want to do something in a text-based mode, a console application would be more appropriate. Leave everything else alone (so don’t use the versioning system and go for a single user project) and click “Create”.

6. WEdit will probably generate some sort of lame error at this point concerning the fact that your project directory actually exists. Evidently it would prefer that you were using a directory that didn’t exist. Actually in the latter case it produces an error about the directory not existing and asks you whether you want it to be created. You lose either way but that’s life and don’t let it throw you.

7. NO! DON’T DO IT! I mean, don’t use the wizard. It screws everything up and generates “helpful” code. If the user has any experience with “wizards” he/she will know that this is a bad thing.

8. The next box is where you come unstuck if you haven’t remembered to do step 1. Fortunately, all you have to do here is find and double-click on the .c file you created earlier.

9. The box after this is for people who like a complicated life and wish to include more than one source file. Suffice it to say that all you need to do is click “Validate” (sometimes twice if you have an odd version of LCC).

10. DON’T PANIC. This dialog box is large and evil but as long as you resist the temptation to twiddle all the knobs and dials you’ll be OK. The “Preprocessor <include> Path” ought to be a subdirectory in your LCC folder called “\include”. Under “Code generation”, check “Optimize” and “Eliminate unused assignments”. Under “Debugging support level”, make sure nothing at all is ticked. The rest of the box ought to be correct already, so click “Next”.

11. Another complicated box. If you want to use DirectX graphics, write “ddraw.lib” in the “Additional files…” box. If you want sound too, write “ddraw.lib dsound.lib”. Sometimes you will need to write “tcconio.lib” in this box if you are using some of the text functions from <conio.h>, but I assure you that is all you ever need to put in this box for now. Most of the rest should be fine. Check that the “Type of output” agrees with what you wanted earlier – i.e. a Windows application. Also check that under “Options”, you aren’t including any debugging information, as this makes files excessively large. Click “Next”.

12. Ignore the next box and click “Finish”.

13. Ignore also the “Error” boxes that seem to be worried about your Windows program having no resources defined for it. Resources are simply one way of getting graphics and sounds and so forth into your programs – and as it turns out they are not even the simplest way. For instance, the whole of NCGi was programmed without resources. The only thing about doing it this way is that you will have to decide for yourself how to store the external data in files, but WAV sounds and BMP images are also easy to read into a C program, so this is no problem.

Now you’ve created your project, WEdit will present you with a worryingly blank editor window containing your source-code file. Where to proceed from here depends on what you want to do and also on whether you have created a Windows or a console project. However, you may feel rather confused right now if you do not yet know how to program. If you are already fluent in C you can skip the next section, but otherwise it’s time for

Some Theory

The basic idea behind any kind of programming language is that it contains a list of instructions for the computer to perform one-by-one in the order in which they are written. Data is stored in the form of variables, which are, when it comes down to it, numbers (they are in binary inside the computer but you don’t have to worry about that). They may also stand for an address in memory of another object, or represent a letter of the alphabet (the ASCII system codes letters into numbers so ‘A’ is 65, ‘Z’ is 90, ‘a’ is 97 and so on). If they do represent a number, that number may be represented to differing degrees of precision depending on how you want to use it. All of this “interpretation” stuff is controlled by the type of a variable. Some common variable types are listed below.

	Type
	Memory used for each
	Description

	int
	4 bytes
	Probably the most common kind of variable – represents an integer (whole number) in the range –2147483648 to +2147483647.

	float
	4 bytes
	“Single-precision floating point” variable. Represents a fractional number to about 6 digits of accuracy and will allow for values up to 38 digits long, or equally small, so can be used for many things.

	char
	1 byte
	Stores a single character. Not normally incredibly useful on its own, but look what’s next.

	char *
	4 bytes
	This stores the address of a char variable in memory. Seems like an odd thing to do? Not if that char variable is at the beginning of a whole sequence of characters that go together to make a string. Note that the “4 bytes” memory-use quoted is only for storing the address in memory of the string and the chars that make up the string itself must take up 1 byte each as well.

	double
	8 bytes
	If you’re a mathematician, a rocket scientist or a precision engineer, you’ll like this variable type. It stores a numerical value to about 15 digits of accuracy and will allow a quite ridiculous range of values up to number 308 digits long. There’s even a 10-byte long double type around that stores 19 significant figures and goes to thousands of digits, but to use that you’d either have to be some sort of compulsive obsessive or want to write a fractal-plotting program.

Creating a variable for a certain purpose is fairly simple. All you have to write is, for example, int n; to get an int type whole number called n, or char *s; to get a variable called s in which you can store the memory location of a load of chars. The semicolon is used by C to indicate the end of an instruction. A very common mistake for beginners (and not-so-beginners who are inaccurate typists) is to finish a line with no semicolon and this leads to no end of problems.

While on the subject of problems, I should probably mention that these come in two flavours. One kind are called compile-time errors and these happen because the programmer has written something in the source code that is grammatically incorrect in the C language. The above semicolon issue is one of these and often a lot of compile-time errors are simple typoqs. The other kind of error is called a run-time error and only happens when you actually try and run the program you have created. Some classic ones include trying to access an area of memory that doesn’t exist (for instance by setting a char * variable to a silly value), dividing by zero or causing the computer to enter an infinite loop. Typically these are worse than compile-time errors because they are not detected by the compiler; they may crash your computer or corrupt data; and if you don’t spot them one of the users of your program probably will and then they will complain that your software is “unstable” or “buggy”. Put it this way: after a few initial skirmishes with runtime errors you’ll probably feel positively sympathetic with Microsoft when you copy of Windows crashes…

Another basic idea is that of a function. This is a block of code that is written on its own and takes input in the form of none, one, or more pieces of data, performs some instructions relating to them and finally may or may not produce an output or return value. An example of a function would be to plot a pixel on the screen: in this case, the input would be two numbers for the (x,y) coördinates of where you want to plot a pixel and if you’re sensible, a third value denoting the colour that you want that pixel to end up. In fact my routine for doing (more-or-less) this is as follows.

void ppix(const unsigned x,const unsigned y,const unsigned char c)

{

prim[x+y*ppitch]=c;

}

As you can see, it is a fairly short function by most standards. (I say that it “more-or-less” plots a pixel on the screen because it actually requires DirectX to set the variable prim to a value that allows the screen to be accessed though it, as well as “locking” the screen so that it can be written to). If you look carefully, you’ll probably be able to figure out that ppix is the name of the function and that x, y and c are taken by it as input (it’s even relatively clear what each of these variables is). The void means that the function does not output anything. Back in the 80’s you could have avoided stating the obvious (sorry) by leaving that word out altogether but in these days of standardised everything, every function has to (nominally) have a return type, even if it is a silly one. The unsigned variable type is just an int that cannot be negative (a negative screen coördinate would be off the screen) and the const before each of the inputs indicates that the value of those inputs is not changed within the function. This is a good thing to mention because it allows the compiler to use less memory because it knows it doesn’t have to create a copy of that variable’s value for the function to use as a “scratch-pad” before it returns.

The curly brackets, along with the semicolon, are another ubiquitous feature of C. They define what is termed a block of code and usually what is written between them is indented. You frequently get blocks within blocks and these call for multiple indentation. The brackets are used here to indicate where the piece of code that comprises the function begins and ends. In other situations you may want a particular block of code to be executed (i.e. “done”) only under some conditions, or you may want a particular bit of code to be done 100 times for different values of a particular variable. Clearing the screen by making each pixel black in turn is an example of when this is necessary because the ppix routine (another word for “function”) above would have to be called for many thousands of different combinations of (x,y) coördinates.

Finally, before getting onto actually doing something with the variables and functions, I should mention that the whole C program is actually contained in a function called main, or WinMain if you’re in Windows, which is invoked (i.e. “done”) when your .exe file is run by the user. As the programmer, you may also define other functions that can be called (i.e. “done”) from inside the main routine if you wish. In fact, many programmers swear that it is best for the computer to spend most of its time running stuff outside the main function and in another one. Personally, I’m not so sure.

Something a Bit More Useful

If you’ve made a console application, then you’re lucky because you can write your main routine like this.

void main()

{

// Some code

}

If you are one of the eternally damned (i.e. a Windows programmer), then you will have to write it like this.

int WINAPI WinMain(HINSTANCE hinstance,HINSTANCE previous,LPSTR cmdline,int showcmd)

{

// Some code

return 0;

}

You have Microsoft to blame for all that stuff in capital letters. They weren’t satisfied with the small and versatile set of types supplied by C and thought it would be “helpful” if they invented about a thousand more of their own. The silly thing is, an HINSTANCE is just an int in disguise and an LPSTR is exactly the same as a char *. Fortunately you don’t have to use these silly types within your program except when interfacing directly with Microsoft code, which you are doing here because this function is being called by Windows itself. The fact that it has a return type is a little ironic. Microsoft programmers initially thought that having all programs return a number to the OS would be a good thing but in every version of Windows so far the return value given by a program has been resolutely ignored. So we are in the situation of having to return some value just to keep the peace with the OS, even though it is absolutely pointless.

At this point I should mention that the // preceding my comment is actually proper C syntax. When the compiler encounters an // it ignores the rest of that line so you can fill it with your meditations on the meaning of life and/or the meaning of the code you’ve just written. Similarly, a block of any size (perhaps of multiple lines) between a /* and a */ is ignored, as are the /* and */ themselves.

Going back to the console implementation for now (mainly because it has easier text display functions that we’ll use later), here is a program that actually calculates something.

void main()

{

int x,y,z;

x=2; y=2;

z=x+y;

}

What this does is to load the value 2 into the variables x and y and then put their sum into the variable z. It is important to note (if you’re a mathematician) that the equals sign here means “make the left-hand side equal to the right-hand side” and not some more complicated thing, so such statements as x+y=2; are nonsense and not accepted by the compiler. C offers a shorthand notation when defining variables that allows us to initialise them with a value at the same time as defining them. Instead of the first two lines in the main routine, we could have written int x=2,y=2,z; - in fact, the entire program could have been written on one line as void main() {int x=2,y=2,z=x+y;} but that’s just silly now, isn’t it?

One could also note that this program is just about as pointless as one can get because it accepts no input from the user and the value z that is calculated is simply thrown away (as are x and y) when the program finishes.

Text I/O Routines

Probably the most fundamental things in the C language are operators such as the + and = signs used in the program above. So I am going to write this section about text instead. Once you’re up and running with graphics you might not want to use text mode much but it’s still useful to have as a quick and easy way of doing I/O. The (complete) program below demonstrates some of the text functions in action. It is quite unlike any of the code we’ve met so far, in that it actually does something potentially useful.

#include <stdio.h>

void main()

{

int x=2,y=2;

char *s=”Barry”;

printf(“%d plus %d equals %d\n”,x,y,x+y);

printf(“’%s’ is a dumb name for a penguin\n”,s);

printf(“%s is a stupid penguin because he thinks that ”,s);

printf(“%d plus %d equals %d\n”,x,y,x+y+1);

printf(“That stupid penguin’s name is stored at memory address “);

printf(“%X (hex)\n”,s);

getchar(); getchar();
}

If you type all of the above into your source-code window while in a console project, you should be able to compile it by pressing F9 (or if that doesn’t work, select Compiler (Rebuild all from the menu bar). You can then run the .exe file produced. Perhaps calling this program “potentially useful” was a slight exaggeration but at least it runs.

There are some things in the code above that you have not yet met. The first line is a statement that includes some code from another file – code that defines the text functions, including printf, in your program. There are unfortunately several different files that must be #included in this way depending on which routines you try to use in your program. It’s a bit messy but the alternative is having a compiler that includes every routine just in case, which would lead to unnecessarily large .exe files.

The line where I define the string variable is admittedly a little odd. It makes sense to do this when you initialise the string, as C will allocate the memory for you in this simple case, however it is not the thing to do halfway through a program if you want to manipulate strings. Essentially, anything that is written the code in quotes gets automatically loaded into memory in various places when the program is started. Writing char *s=”Barry”; will set the value of s (which if you remember is a memory address) to the address of the byte where the ‘B’ in “Barry” is stored. Since a zero byte is conventionally put after the end of any string, C can also tell where the string stops.

printf is an odd function because it takes a variable number of inputs. The first is always one of those strings in quotes – essentially the text you want to print but with various control codes stuck in so that variables’ values can be printed as well. Anything beginning with % indicates that the value of the next variable in the list of inputs will be printed in that position, except for %%, which just indicates that you want to print a percent sign (well you have to do it somehow). %d will print an integer value (or equally well, a memory address) as decimal, %X will print an integer value as hex and %s will print a char * variable as a string. Odd things beginning with a backslash indicate that a control character of some sort should be printed there, except for \\, which means that you really just want one backslash. \n produces a carriage return and a linefeed (printf does not automatically start a new line every time it is called); \t produces a tab and \r does a carriage return without a linefeed. That last one is useful if you want to overwrite something you’ve just printed, so for example printf(“%d%% complete\r”,n); called repeatedly for n going from 0 to 100 would produce a display of percentage completion for something.

The final thing you won’t have seen before in this program is the getchar function that is used twice at the end. Essentially this waits for you to press return. I include it because Win32 console programs have a nasty habit of deleting their windows as soon as they have finished, making it impossible to read the text. I put it in twice because sometimes Windows will (in its usual reliable way) interpret a mouse button click as an extra carriage return or something, meaning that a program with only one call to getchar would sometimes unexpectedly quit as well.

Now insert the following lines just after the “Barry” definition.

printf(“Let x=”); scanf(“%d”,&x);

printf(“Let y=”); scanf(“%d”,&y);

On recompiling the program, you will be amazed to find that you can now tell the computer what values to give the variables x and y before running the rest of the code. The scanf function works almost exactly like the printf function in reverse: the input string dictates what the function expects you to type before pressing return (the \n is not necessary, as scanf takes a carriage return as the end of the input). Note that the prompt for the input had to be printed separately with printf.

The ampersands before the variables inputted to scanf are needed because scanf does something that is really rather sneaky. &v is equal to the address at which the variable v is stored in memory, so once you provide scanf with that information, it can rewrite the memory at that address in order to change the value of the variable v. If you just gave it v as input, it could use information about the current value of v in its calculations, but it couldn’t change the value of v back in the program from which it was called. Input to multiple variables can also be achieved, for example scanf(“%d,%d”,&x,&y); would take input in the form of two numbers separated by a comma and would put the values entered into the variables x and y in that order.

A couple of points of “grammar” are touched on here as well. One is that (as we have seen before) more than one statement can be put on one line. Another is that we inserted the new lines after the definition of the variables. Why? Well, obviously we would have to define x and y before we input any data into them, and if we were programming in C++ this would be all we’d have to worry about. Oddly, though, C has the convention that within any block of code (delimited by curly brackets) all the variable definitions must be made immediately after the opening bracket and never in between other lines of code. This seems stupid to the uninitiated, mainly because it is, but at least it has the good side effect that all the variables used in a particular block of code are listed right there at the beginning. This means we have some idea (in a large project) of how much memory and which variable names we have used in each block, without having to trawl through thousands of lines trying to find a stray int.

Operators: The Master List

Probably the most fundamental things in the C language are operators such as the + and & signs used in the programs on the previous pages. Their main purpose is to process the data in the variables in useful ways, so we can change their values, do arithmetic, look things up in memory, make logical calculations and so forth. There are quite a lot of them about (and I’m going to list all of them) so a table would seem a good idea.

	Usage
	Explanation

	a+b
	Equal to the sum of a and b.

	a-b
	Equal to a minus b.

	a*b
	Equal to a multiplied by b.

	a/b
	Equal to a divided by b. Dividing by zero can have odd consequences, so try to avoid it.

	a%b
	Equal to the remainder you get on dividing a by b. More useful than it may seem on first sight. If a is negative the result comes out negative; if b is zero you are dividing by zero again and I don’t know what happens when b is negative.

	a^b
	Equal to the value you get by setting its nth bit equal to 0 if the nth bits of a and b are the same and equal to 1 otherwise. This is nothing to do with exponentiation whatsoever – technically minded people call it a bitwise XOR operation.

	a&b
	Bitwise AND. The nth bit is equal to 1 only if both nth bits of a and b are 1.

	a|b
	Bitwise OR. The nth bit is equal to 1 if either of the nth bits of a or b are 1.

	~a
	Bitwise NOT or compliment. Equal to the value of a with binary zeroes replaced by ones and vice versa.

	a>>b

a<<b
	Shifts the binary value of a, b bits in the direction indicated by the arrows. So x<<1 equals x*2 if x is an integer. Binary operations on floats produce bizarre results.

	a=b

	Makes a equal to b. The expression a=b itself has value equal to b so we can write things like x=y=0 (i.e. x=(y=0)) to set both x and y to zero.

	a++
	Increment operator. Increases the value of a by one after the current line has been executed. So y=x++; would set y equal to x and then increase x by one.

	a--
	Decrement operator. Decreases the value of a by one after the current line has finished.

	a+=b a-=b a*=b a/=b a%=b a^=b a&=b a|=b a>>=b a<<=b
	Essentially, a#=b means the same as a=a#b, where # stands for any binary operator shown, except that it’s easier to write if a has a long variable name. It also compiles to faster code (I think).

	a==b
	Equal to 1 if a and b are equal and 0 otherwise.

	a!=b
	Equal to 1 if a and b are not equal and 0 otherwise.

	a>b

a<b

a>=b

a<=b
	Equal to 1 if a is greater than, smaller than, greater than or equal to, or smaller than or equal to b (respectively) and is equal to 0 otherwise.

	a && b
	Equals 1 if both a and b are non-zero and 0 otherwise. Called “logical AND”

	a || b
	Equals 1 if either a or b is non-zero and equals 0 when they are both zero. “Logical OR”

	!a
	Equals 1 if a is zero and equals 0 if a doesn’t. “Logical NOT”.

	*a
	Equals the contents of memory address a.

	&a
	Equals the address in memory of where the variable a is stored.

	a[b]
	The bth element of the array-variable a. Array variables are actually addresses where a list of other variables starts, so a[b] is just the bth member of the list starting at address a. So if char *s is a string then s[5] would be the 6th character in that string.

	a.b
	The member b of structure-variable a. Essentially a structure is a variable that contains other variables, which are called members.

	a->b
	Equivalent to (*a).b because programmers often end up dealing with memory locations of structures instead of the actual structures themselves.

	a?b:c
	Equals b if a is non-zero and c otherwise. Very cool.

	a,b
	Evaluates a (which may involve calling a function that does something), then evaluates b and forgets what a is equal to. The whole thing a,b is equal to the value of b. Very odd.

Flow Control Statements

In programming, as with plumbing, flow control is important. You will often want the computer to execute the same sequence of instructions many times, perhaps for different values of the same variable. Another important thing to be able to do (in plumbing as well as programming) is to make decisions on what to do based on some data. Here is an example program.

#include <stdio.h>

void main()

{

int n;

for (n=1;n<=100;n++)

{

if (n%7==0) printf(“*%d* “,n);

else if (n%3==0 || n%5==0) printf(“%d “,n);

else printf(“. ”);

}

getchar(); getchar();

}

This will go through all the numbers from 1 to 100 and print the number out surrounded by stars if it divisible by 7. Otherwise it prints it out normally if it is divisible by 3 or 5, or if none of the above holds then it just prints a dot. What you need to know in order to understand this program is that if (X) followed by a statement or a block of code will only execute that code if X is non-zero. A statement or block of code after an else will only be executed if the preceding if (and elses must be placed directly after ifs) wasn’t done, so X must have been zero. In our example the thing following the else is actually another if-else pair so we have a list of three options out of which only one is done.

The whole idea behind this odd-sounding stuff about various things being non-zero is as follows. In C, non-zero things are interpreted as being “true” statements (e.g. 2+2==4 is always equal to 1) and things that are zero are interpreted as being “false” (e.g. 2+2==5 is always equal to 0 – check for yourself using the table of operators!). So this a==b thing is a kind of logical equals which tells you whether the statement “a equals b” is true or false. The same goes for the greater-than symbol and so on. The logical AND and OR operators actually work in the way you would expect as well, so (x==5 || y==5) is true if either x or y are equal to 5. Then there is also the issue of which operators are worked out “first” in an expression like (a+b*c && d). Of course you can use huge quantities of brackets to force the order of calculation, but suffice it to say for now that *, / and % are worked out before + and -; and the unary operators (those which only operate on one variable) are worked out before everything else. Next, the comparisons (greater-than and friends) are worked out once all the arithmetic stuff is done (with the exception of the bitwise operations for some reason); then the logical combinations with AND and OR are worked out; and finally the make-equal-to sign = and that funny a?b:c thing are done.

Once you’ve understood all that lot, the only bit you might have trouble understanding in the above program is the statement that looks like for (X;Y;Z). This neat piece of apparatus causes the following statement or block of code to be executed repeatedly. The statement X is done before the whole process begins but each “loop” through the repeated block can only start if the value of Y is non-zero (i.e. true). Then the statement Z is performed after the end of each loop. So our for-loop above initially sets n to zero; will execute the following block of code as long as n is less than or equal to 100; and will increment n (by one) after each loop through. So can you figure out what value n will have after the for-loop has finished? If you think you know, check by making the program print it out after the for-loop has completed. You are allowed to leave any or all of X, Y and Z blank if you wish: the for-loop will work quite happily without them, with the convention that if Y is left blank it is actually always true so the loop repeats forever.

The above two are probably the most useful flow-control statements you’ll ever use. The formulation of the for statement is so general it almost makes everything else unnecessary. For completeness, however, I will mention that a while (X) loop works exactly the same as a for (;X;) loop so it will keep repeating the following block of code but only if X is true at the beginning of each repeat. It is even possible that a for-loop or while-loop will not even be done once if the condition for it is false to begin with! Then there is a loop that looks like do {block of code} while (X); and checks the condition X after each loop through the block has completed, so with a do-while you can be sure that the block will have been done at least once.

Figure 1. No semicolon.

© Stephen Brooks [2001.Nov.23]

