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1 Assumptions

The behaviour of a repeating accelerator cell around a closed orbit phase space position s0 =
(x0, x

′
0, y0, y

′
0) can be approximated by a matrix mapping

s0 + δs → s0 +Aδs,

where A is a 4 × 4 matrix. Since the entries of A are real, its eigenvalues will either be real or
appear as complex conjugate pairs. It is also assumed that the optics are stable in both phase
space planes, so no eigenvalues can have modulus greater than one. As phase space volume in
conserved (Liouville’s theorem), the product of the eigenvalues has modulus exactly one. These
two conditions imply that every eigenvalue has modulus one (any smaller values would make
the product less than one).

2 Characteristic Polynomial

If λ is an eigenvalue of A, then Av = λv for some nonzero vector v and therefore (A−λI)v = 0.
This means that det(A− λI) = 0 for eigenvalues λ. In fact p(λ) = det(A− λI) is a polynomial
of order 4, so is determined by its four roots up to a constant factor. We already know that
p(0) = detA = 1 so the constant term in p is one. For large λ the determinant behaves like
(−λ)4, so the leading term is also one.

The fact that all the eigenvalues have modulus one and will occur in conjugate pairs if
complex means that without loss of generality, they can be written e±iφn for n = 1, 2. This
allows p to be written explicitly in terms of the tunes φn:

p(λ) =
2∏

n=1

(λ− eiφn)(λ− e−iφn) =
2∏

n=1

(λ2 − 2λ cosφn + 1)

= λ4 − 2λ3(cosφ1 + cosφ2) + λ2(2 + 4 cosφ1 cosφ2)− 2λ(cosφ1 + cosφ2) + 1.

Thus if the coefficients of p are known, the sum and product of the cosines of the tunes can be
found. This will determine cosφn up to swapping φ1 ↔ φ2.
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3 Coefficients of det(A− λI)

The determinant of a general N ×N matrix M is given by the sum over N ! permutations

detM =
∑

perms π

επ

N∏
n=1

mnπ(n),

where επ = ±1 is the signature of the permutation π, which alternates under swapping two
elements and is +1 for the identity permutation.

For the case M = A − λI, we have mij = aij for i 6= j and mii = aii − λ on the diagonal.
Hence any λn term in p(λ) must come from permutations that map at least n elements to
themselves, so they hit at least n diagonal elements of M .

3.1 λ4 Coefficient

There is only one permutation that maps 4 out of 4 elements to themselves and that is the
identity permutation 1234, with signature ε1234 = +1. Therefore the λ4 coefficient of p must be
the same as in

ε1234m11m22m33m44 = (−λ)4 + ...,

so it is equal to one as expected.

3.2 λ3 Coefficient

No permutation can move just one element out of place because there is nowhere for it to go if
the other N − 1 elements remain where they are. So the identity is still the only permutation
that matters for the λ3 coefficient, which can be found in the expression below:

ε1234m11m22m33m44 = (−λ)4 + (−λ)3(a11 + a22 + a33 + a44) + ...,

giving the λ3 coefficient to be −(a11 + a22 + a33 + a44) = −TrA.

3.3 λ2 Coefficient

This is the final coefficient required for determining the tunes. As well as 1234 there are now
the single-swap permutations 1243, 1324, 1432, 2134, 3214, 4231, which have επ = −1. The λ2

coefficient coming from the 1234 product is:

a11a22 + a11a33 + a11a44 + a22a33 + a22a44 + a33a44.

Each single-swap permutation produces a term like the following:

ε1243m11m22m34m43 = (−1)((−λ)2a34a43 + ...),

so the total contribution of the swap terms to the λ2 coefficient is

−a34a43 − a23a32 − a24a42 − a12a21 − a13a31 − a14a41.

More compactly, the λ2 coefficient can be written
∑

1≤i<j≤4 aiiajj − aijaji.
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4 Conclusion

Combining the results from previous sections gives for the λ3 coefficient

−2(cosφ1 + cosφ2) = −TrA

⇒ S := cosφ1 + cosφ2 =
1

2
TrA

and for the λ2 coefficient

2 + 4 cosφ1 cosφ2 =
∑

1≤i<j≤4
aiiajj − aijaji

⇒ P := cosφ1 cosφ2 =
1

4

∑
1≤i<j≤4

(aiiajj − aijaji)−
1

2
.

From this sum and product, the cosines can be determined via a quadratic equation:

S = cosφ1 + cosφ2 = cosφ1 + P/ cosφ1

⇒ S cosφ1 = (cosφ1)
2 + P

⇒ (cosφ1)
2 − S cosφ1 + P = 0

⇒ (cosφ1 − S/2)2 − (S/2)2 + P = 0

⇒ cosφ1 = S/2±
√

(S/2)2 − P .

Because the choice of φ1 rather than φ2 here was arbitrary, the two ± solutions give both tune
cosines. The cosines can place the fractional tunes φn on the interval [0, π]; information about
the ‘integer’ part of the tune (complete phase space rotations within the cell) is not contained
in the transfer matrix A.
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