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1 Beam Slice Problem

Before considering the whole beam, a simpler problem is a slice (at rest) with charge density

ρ = ρ2D(x, y)δ(z).

The electric field is given by a potential E = −∇V where V = 0 on a perfectly conducting pipe
whose shape does not change in z. Since ∇ ·E = ρ/ε0, the equation to solve is ∇2V = −ρ/ε0.

For z 6= 0, ρ = 0 so ∇2V = 0 and the problem can be restated as a ‘time evolution’ problem

d2V

dz2 = −d2V

dx2 −
d2V

dy2 ⇒ V ′′ = −∇2
x,yV,

where prime denotes differentiation by z and ∇2
x,y is the 2D Laplacian.

1.1 Eigenmode Decomposition

Suppose there is a set of 2D eigenpotentials Vλ(x, y) for various λ such that

∇2
x,yVλ = λVλ and Vλ = 0 on pipe.

Assuming the eigenpotentials span the space of all 2D potentials within the pipe, decompose
the 3D potential at each z via V =

∑
λ aλ(z)Vλ. Now,

V ′′ =
∑
λ

a′′λVλ and V ′′ = −∇2
x,yV = −

∑
λ

aλλVλ,

so equating coefficients gives
a′′λ = −λaλ.

Noting that usually for these sorts of eigenmodes, −λ > 0 and that realistically the potential
should be exponentially decaying rather than increasing with z, the solution is

aλ(z) = Aλe−
√
−λz,

for z ≥ 0 and some constants Aλ.
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1.2 Initial Conditions

When passing through z = 0 we expect an infinite value of V ′′ to occur because of the impulse
nature of ρ and the x and y contributions to the Laplacian become negligible. By symmetry,
V (x, y,−z) = V (x, y, z) so V ′(x, y, 0−) = −V ′(x, y, 0+) and the impulse contribution to V ′′ =
∇2V at z = 0 is:

2V ′(x, y, 0+)δ(z) = −ρ/ε0 =
−ρ2D(x, y)δ(z)

ε0
⇒ V ′(x, y, 0+) =

−ρ2D(x, y)

2ε0
.

Note that V ′ =
∑
λ a
′
λVλ and a′λ = −

√
−λAλe−

√
−λz, so

V ′(z = 0+) =
∑
λ

−
√
−λAλVλ =

−ρ2D

2ε0
.

Assuming the eigenpotentials are orthogonal and taking the dot product with a particular Vλ
gives

√
−λAλVλ · Vλ =

ρ2D · Vλ
2ε0

⇒ Aλ =
ρ2D · Vλ

2ε0
√
−λ|Vλ|2

.

Alternatively, if ρ2D =
∑
λ ρλVλ then Aλ = ρλ/(2ε0

√
−λ).

1.3 Beam Slice Potential

After obtaining Vλ with an eigenmode solver of the pipe and the constants Aλ using ρ2D and
the formula in the previous section, the potential anywhere in the pipe is given by

V (x, y, z) =
∑
λ

Aλe−
√
−λ|z|Vλ(x, y).

2 Separable Charge Density Case

The result for beam slices generalises to separable charge densities (at rest)

ρ = ρ2D(x, y)f(z),

since the problem is linear, translatable in z and f(z) =
∫∞
−∞ f(Z)δ(z − Z) dZ,

V (x, y, z) =
∑
λ

AλVλ(x, y)

∫ ∞
−∞

f(Z)e−
√
−λ|z−Z| dZ.

2.1 Constant Current Beam

Suppose that f(z) is constant; without loss of generality, f(z) = 1 with appropriate rescaling of
ρ2D. Now ∫ ∞

−∞
f(Z)e−

√
−λ|z−Z| dZ =

∫ ∞
−∞

e−
√
−λ|z| dz = 2

∫ ∞
0

e−
√
−λz dz =

2√
−λ

,

so the potential no longer depends on z:

V (x, y, z) =
∑
λ

2Aλ√
−λ

Vλ(x, y) = V2D(x, y) =
1

ε0

∑
λ

ρ2D · Vλ
−λ|Vλ|2

Vλ(x, y).
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If ρ2D =
∑
λ ρλVλ then by orthogonality, ρ2D · Vλ = ρλ|Vλ|2 and

V2D =
∑
λ

ρλ
ε0(−λ)

Vλ.

This can also be derived quickly from the 2D equation ∇2
x,yV = −ρ/ε0 that assumes d

dz = 0.

2.2 Longitudinal Space Charge Force

For longitudinal space charge the field component Ez = −V ′ is of interest and

V ′(x, y, z) =
∑
λ

AλVλ(x, y)
√
−λ

(
−
∫ z

−∞
f(Z)e

√
−λ(Z−z) dZ +

∫ ∞
z

f(Z)e
√
−λ(z−Z) dZ

)
=

∑
λ

AλVλ(x, y)
√
−λ

∫ ∞
−∞

f(Z) sgn(Z − z) e−
√
−λ|Z−z| dZ.

2.3 Derivative of Line Density Approximation

Since V ′ = 0 for f(z) = 1, by linearity constant contributions to f can be neglected when
calculating Ez. Also, V ′ is only sensitive to the value of f ‘locally’, that is in the region a few
times 1/

√
−λ (the exponential decay length) from z. This means the next Taylor series term

f(Z) = f ′(z)(Z − z) can be used as an approximation. Note that defining the line density
ρ1D(z) =

∫∫
ρ(x, y, z) dx dy = f(z)

∫∫
ρ2D, we have f ′(z) = ρ′1D(z)/

∫∫
ρ2D. The integral in the

last section becomes:∫ ∞
−∞

f(Z) sgn(Z − z) e−
√
−λ|Z−z| dZ = f ′(z)

∫ ∞
−∞

(Z − z)sgn(Z − z) e−
√
−λ|Z−z| dZ

= f ′(z)

∫ ∞
−∞
|Z − z|e−

√
−λ|Z−z| dZ

= 2f ′(z)

∫ ∞
0

Ze−
√
−λZ dZ

= 2f ′(z)

[(
− Z√
−λ
− 1

−λ

)
e−
√
−λZ

]∞
Z=0

= 2f ′(z)
1

−λ
.

So the potential is approximately

V ′(x, y, z) = 2f ′(z)
∑
λ

Aλ√
−λ

Vλ(x, y) = f ′(z)V2D(x, y),

that is f ′(z) times the formula for V in the constant current case. Substituting the formula for
Aλ gives

V ′(x, y, z) = f ′(z)
∑
λ

ρ2D · Vλ
ε0(−λ)|Vλ|2

Vλ(x, y)

and
Ez
ρ′1D

=
−V ′

f ′(z)
∫∫
ρ2D

=
1

ε0
∫∫
ρ2D

∑
λ

ρ2D · Vλ
λ|Vλ|2

Vλ(x, y) =
−V2D(x, y)∫∫

ρ2D
.

This still depends on x and y. To further approximate, an averaged value over the whole beam
can be obtained by dotting this formula with ρ2D/

∫∫
ρ2D:〈

Ez
ρ′1D

〉
=

1

ε0(
∫∫
ρ2D)2

∑
λ

(ρ2D · Vλ)2

λ|Vλ|2
=

−ρ2D · V2D

(
∫∫
ρ2D)2

.
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2.4 Relationship to the g Factor

A conventional way of writing the longitudinal space charge field (e.g. [1]) is

Ez = Ez,wall −
q

4πε0

1

γ2

(
1 + 2 ln

rwall

rbeam

)
∂λ

∂z
,

where q is the charge on an individual particle, γ is the gamma factor of a moving beam and λ
is the particle line density. So far this report has considered perfectly-conducting walls where
Ez,wall = 0 and stationary ‘beams’ for which γ = 1. The charge line density ρ1D = qλ. In this
case,

Ez = − 1

4πε0

(
1 + 2 ln

rwall

rbeam

)
ρ′1D,

where the dimensionless term in brackets is called the ‘g factor’. This formula assumes a circular
pipe and the g factor differs for other shapes. In general, this may be related to the quantity in
the previous section via

Ez = − 1

4πε0
gρ′1D ⇒ g = −4πε0

〈
Ez
ρ′1D

〉
=

4π

(
∫∫
ρ2D)2

∑
λ

(ρ2D · Vλ)2

−λ|Vλ|2
.

In terms of the 2D potential,

g = 4πε0
ρ2D · V2D

(
∫∫
ρ2D)2

and 〈Ez〉 = −ρ′1D

ρ2D · V2D

(
∫∫
ρ2D)2

.

2.5 Example: Circular Pipe

For a circularly symmetric beam in a circular pipe, ρ2D · Vλ = 0 for eigenpotentials that vary
with θ, leaving only those expressable as V (r). The eigenpotentials must satisfy

∇2
x,yV (r) =

1

r

∂V

∂r
+
∂2V

∂r2
= λV ⇒ r2∂

2V

∂r2
+ r

∂V

∂r
− λr2V = 0,

where V ′(0) = 0 by differentiability at the centre and V (R) = 0 boundary condition for a pipe
of radius R. Changing to a rescaled variable x with x2 = −λr2 turns this into Bessel’s equation

x2∂
2V

∂x2
+ x

∂V

∂x
+ (x2 − α2)V = 0

for α = 0, with boundary conditions V ′(0) = 0 and V (x =
√
−λR) = 0. This has the solution

V = J0(x) = J0(
√
−λr) but to satisfy the boundary condition,

√
−λR = J0n for some n, where

J0n is the nth root of J0 (for which there is no analytic expression). Thus the eigenvalues are
λn = −(J0n/R)2 and Vλn will be abbreviated to Vn(r) = J0((r/R)J0n).

The established result 1 + 2 ln(R/rbeam) for a circular uniform beam is actually calculated
for the field at the centre of the pipe and not averaged over the beam, so define the position-
dependent g factor as

g(x, y) = −4πε0
Ez(x, y)

ρ′1D

=
4π∫∫
ρ2D

∑
λ

ρ2D · Vλ
−λ|Vλ|2

Vλ(x, y) = 4πε0
V2D(x, y)∫∫

ρ2D
.
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2.5.1 Circular Uniform Beam

Assume a uniform, normalised beam for which ρ2D = 1/(πr2
beam) for r ≤ rbeam and zero outside.

Noting
∫∫
ρ2D = 1 and J0(0) = 1, the value of interest is

g(0, 0) = 4π
∑
n

ρ2D · Vn
−λn|Vn|2

Vn(r = 0) = 4π
∑
n

ρ2D · Vn
(J0n/R)2|Vn|2

.

Consider the dot product

ρ2D · Vn =
1

πr2
beam

∫ rbeam

r=0
J0((r/R)J0n) 2πr dr =

2

r2
beam

∫ rbeam

r=0
J0((r/R)J0n) r dr,

rescale the integral with x = (r/R)J0n, giving r dr = (R/J0n)2 x dx:

ρ2D · Vn =
2

((rbeam/R)J0n)2

∫ rbeam
R

J0n

x=0
xJ0(x) dx.

Properties of the Bessel functions give that xJ0(x) is the derivative of xJ1(x), so

ρ2D · Vn =
2

(rbeam/R)J0n
J1((rbeam/R)J0n) =

2

fJ0n
J1(fJ0n),

where the beam radius fraction f = rbeam/R has been defined (so the textbook result 1 +
2 ln(R/rbeam) becomes 1− 2 ln f). The other integral to calculate is

|Vn|2 =

∫ R

r=0
J0((r/R)J0n)2 2πr dr = 2πR2

∫ 1

x=0
xJ0(xJ0n)2 dx,

where the substitution x = r/R and r dr = R2 x dx has been used. Compare with the orthogo-
nality relation for Bessel functions∫ 1

0
xJα(xJαm)Jα(xJαn) dx =

δmn
2
Jα+1(Jαm)2,

which for α = 0 and m = n becomes∫ 1

0
xJ0(xJ0n)2 dx =

1

2
J1(J0n)2,

therefore
|Vn|2 = πR2J1(J0n)2.

Substituting these into the formula gives

g(0, 0) = 4π
∑
n

2
fJ0n

J1(fJ0n)

(J0n/R)2πR2J1(J0n)2
= 8

∑
n

J1(fJ0n)

fJ3
0nJ1(J0n)2

.

The beam-averaged g factor in this case just has an additional factor of ρ2D · Vn:

g = 16
∑
n

J1(fJ0n)2

f2J4
0nJ1(J0n)2

.

Numerical evaluation (30000 terms) shows that to within 10−7, this g(0, 0) = 1 − 2 ln f as
required and g = 1

2 − 2 ln f .
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2.5.2 Circular Waterbag Beam

From results in the last section, for any beam normalised by
∫∫
ρ2D = 1 in a circular pipe,

g = 4
∑
n

(ρ2D · Vn)2

J2
0nJ1(J0n)2

is the averaged g factor, where Vn = J0((r/R)J0n). For a waterbag beam, ρ2D ∝ 1− (r/rbeam)2

for r ≤ rbeam and zero outside, so when normalised, ρ2D = (2/(πr2
beam))(1 − (r/rbeam)2). The

term that needs calculating is

ρ2D · Vn =
2

πr2
beam

∫ rbeam

r=0
(1− (r/rbeam)2) J0((r/R)J0n) 2πr dr

=
4

r2
beam

∫ rbeam

r=0
(1− (r/rbeam)2) J0((r/R)J0n) r dr.

Now perform the same rescaling as before with x = (r/R)J0n, r dr = (R/J0n)2 x dx and
r/rbeam = x/(fJ0n):

ρ2D · Vn =
4R2

r2
beamJ

2
0n

∫ fJ0n

x=0
(1− (x/(fJ0n))2) J0(x)x dx

=
4

f2J2
0n

∫ fJ0n

x=0
xJ0(x)− 1

f2J2
0n

x3J0(x) dx.

Since J ′0 = −J1 and (xJ1)′ = xJ0, it can be seen that (x3− 4x)J1 + 2x2J0 differentiates to x3J0.
Therefore

ρ2D · Vn =
4

f2J2
0n

[
xJ1(x)− (x3 − 4x)J1(x) + 2x2J0(x)

f2J2
0n

]fJ0n
x=0

=
4

f2J2
0n

(
fJ0nJ1(fJ0n)− ((fJ0n)3 − 4fJ0n)J1(fJ0n) + 2(fJ0n)2J0(fJ0n)

f2J2
0n

)

=
4

f2J2
0n

(
fJ0nJ1(fJ0n)− fJ0nJ1(fJ0n)− 2J0(fJ0n) +

4J1(fJ0n)

fJ0n

)
=

8

f2J2
0n

(
2J1(fJ0n)

fJ0n
− J0(fJ0n)

) (
c.f.

2

fJ0n
J1(fJ0n) for uniform beam

)
.

Substituting back into the formula for g gives

g = 256
∑
n

(
2J1(fJ0n)
fJ0n

− J0(fJ0n)
)2

f4J6
0nJ1(J0n)2

.

Numerical computation (30000 terms) shows that to within 10−11, g = 11
12 − 2 ln f .

2.5.3 Potential Method for General Circularly-Symmetric Beam

If the constant current potential V2D is known, the g factor 4πε0(ρ2D · V2D)/(
∫∫
ρ2D)2 can be

found by calculating ρ2D · V2D directly. In the case of a circular pipe with perfectly conducting
boundary at r = R, V2D = V (r) is determined by

∇2
x,yV (r) =

1

r
V ′ + V ′′ = − ρ

ε0
, V (R) = 0,
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where prime denotes differentiation by r not z here. The integral to be evaluated is

ρ2D · V2D =

∫ R

0
ρ(r)V (r)2πr dr

and while there is no general simplification of this, Baartman provides solutions for a wide range
of cases using this method in [2].

2.6 Example: Rectangular Pipe

A rectangular beam pipe [0, X]× [0, Y ] has eigenpotentials

Vnm = sin(nπx/X) sin(mπy/Y ) with λnm = −(nπ/X)2 − (mπ/Y )2

for integers n,m ≥ 1. Calculations will also require the value

|Vnm|2 =

∫ X

0

∫ Y

0
V 2
nm dx dy =

∫ X

0
sin2(nπx/X) dx

∫ Y

0
sin2(mπy/Y ) dy =

XY

4
.

Substituting these into the g factor formula gives

g =
16

πXY (
∫∫
ρ2D)2

∑
n,m≥1

(ρ2D · Vnm)2

(n/X)2 + (m/Y )2
.

2.6.1 Uniform Rectangular Beam

Suppose the beam occupies the rectangle [x0, x1] × [y0, y1] with ρ2D = 1, so that
∫∫
ρ2D =

(x1 − x0)(y1 − y0) = ∆x∆y. Calculate

ρ2D · Vnm =

∫ x1

x0

∫ y1

y0
sin(nπx/X) sin(mπy/Y ) dx dy

=

[−X
nπ

cos(nπx/X)

]x1
x0

[−Y
mπ

cos(mπy/Y )

]y1
y0

=
XY

nmπ2
(cos(nπx1/X)− cos(nπx0/X))(cos(mπy1/Y )− cos(mπy0/Y )).

So that

g =
16XY

π5∆x2∆y2

∑
n,m≥1

(cos(nπx1/X)− cos(nπx0/X))2(cos(mπy1/Y )− cos(mπy0/Y ))2

n2m2((n/X)2 + (m/Y )2)
.

2.6.2 Elliptical Gaussian Beam

An elliptical Gaussian beam has ρ2D = e−(ax2+2bxy+cy2) = e−x
TMx where M =

[
a b
b c

]
and

x =

[
x
y

]
. It is well known that

∫∫
e−x

Tx =
∫∫

e−(x2+y2) = π, so composing an arbitrary linear

function x→ Qx gives
∫∫

e−x
TQTQx = π/detQ, thus if QTQ = M then (detQ)2 = detM and∫∫

e−x
TMx = π/

√
detM, that is

∫∫
ρ2D = π/

√
ac− b2.
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For a Gaussian centred on (x̄, ȳ) that is not significantly outside the beam pipe, make the
approximation to integrate over the whole x–y plane

ρ2D · Vnm =

∫ X−x̄

−x̄

∫ Y−ȳ

−ȳ
e−(ax2+2bxy+cy2) sin(nπ(x̄+ x)/X) sin(mπ(ȳ + y)/Y ) dx dy

'
∫ ∫

e−(ax2+2bxy+cy2) sin(nπ(x̄+ x)/X) sin(mπ(ȳ + y)/Y ).

Note that sinx = 1
2i(e

ix − e−ix) so that

ρ2D · Vnm ' 1

−4

∑
j,k=−1,1

∫ ∫
e−(ax2+2bxy+cy2)jejinπ(x̄+x)/Xkekimπ(ȳ+y)/Y

= −1

4

∑
j,k=−1,1

jkeiπ(jnx̄/X+kmȳ/Y )
∫ ∫

e−(ax2+2bxy+cy2−(iπjn/X)x−(iπkm/Y )y).

The negative exponent is of the form xTMx+bTx, where bT = −iπ[jn/X, km/Y ]. Noting that
M = MT , a shift of origin expands as (x + c)TM(x + c) = xTMx + 2cTMx + cTMc. This is
equal to xTMx + bTx + cTMc if one puts c = 1

2M
−1b. Thus xTMx + bTx = (x + c)TM(x +

c) − 1
4b

TM−1b. The shift won’t affect the integral while the constant term in the exponent
becomes a constant factor:

ρ2D · Vnm ' −1

4

∑
j,k=−1,1

jkeiπ(jnx̄/X+kmȳ/Y )e
1
4
bTM−1b

∫ ∫
e−(ax2+2bxy+cy2)

= − π

4
√
ac− b2

∑
j,k=−1,1

jkeiπ(jnx̄/X+kmȳ/Y )e
1
4
bTM−1b.

To evaluate the exponent, note that M−1 = 1
ac−b2

[
c −b
−b a

]
so

1

4
bTM−1b = −π

2

4
[jn/X, km/Y ]

1

ac− b2

[
c −b
−b a

] [
jn/X
km/Y

]

= − π2

4(ac− b2)

(
c(jn/X)2 − 2b(jn/X)(km/Y ) + a(km/Y )2

)
= − π2

4(ac− b2)

(
c(n/X)2 − 2bjk(n/X)(m/Y ) + a(m/Y )2

)
,

where the last line has used j2 = k2 = 1. The summand apart from the eiπC term now only
depends on jk, which shall be renamed to j and collect pairs of terms which differ by both j
and k changing sign, which inverts the sign of C, making eiπC + e−iπC = 2 cosπC.

ρ2D · Vnm ' − π

2
√
ac− b2

∑
j=−1,1

j cosπC expE

= −1

2

∫ ∫
ρ2D

∑
j=−1,1

j cosπC expE,

where C = nx̄/X+ jmȳ/Y and E = − π2

4(ac−b2)

(
c(n/X)2 − 2bj(n/X)(m/Y ) + a(m/Y )2

)
. Aside

from the cancellation of
∫∫
ρ2D no further simplification is possible on substituting into the g

factor formula.
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3 Moving Beams (Longitudinal Space Charge)

Previous sections have only considered a stationary beam, or alternatively a beam in its co-
moving frame (assuming negligible relative velocities between particles). Writing the co-moving
quantities with a tilde, the g factor relationship is Ẽz = − 1

4πε0
gρ̃′1D. The velocity of the beam

is parallel to the z axis, so the parallel component of the electric field Ez = Ẽz is unchanged
under frame transformation and produces no other field components.

The line density is less trivial to transform. Define Q(z) =
∫ z
−∞ ρ1D(Z) dZ to be the amount

of charge at positions Z ≤ z. Q transforms as a scalar quantity whereas the density ρ1D = dQ
dz

is actually a rank 1 covariant tensor and ρ′1D = d2Q
dz2

is rank 2 covariant. As the beam is larger

in its rest frame by z̃ = γz, this means ρ′1D = (dz̃
dz )2 d2Q

dz̃2
= γ2ρ̃′1D.

Putting this all together gives the g factor relation for a moving beam as

Ez = − 1

4πε0

g

γ2
ρ′1D.

3.1 Space Charge Energy Gain (or loss) per Turn

If a turn in the machine has length L, then ∆E = LdE
dz = LFz = LqEz, therefore

∆E = − Lq

4πε0

g

γ2
ρ′1D.

This is equivalent to a voltage of

V =
L

4πε0

g

γ2
ρ′1D.
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