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1 Potential Term

In cylindrical polar coordinates (r, 6, z), consider the magnetic scalar potential

¢ = sin(nf + w)ka(z)

for some integers n, k, angle 1) and function f. The associated magnetic field is

sin(nf + )krF1f(2)
B=V¢= gqber - 1(;?% + ggf)ez = | ncos(nf + ¥)r*=1f(z) ,
" " z sin(nf + )rf f'(2)
which automatically satisfies V. x B =V x V¢ = 0. The only remaining condition on ¢ is
¢ 106 10% 0%
0=V-B=V-Vo= 5ot o Trae " a2
= sin(nf + 1) (k(k: —D)rF 2 (2) 4+ krF T2 (2) — 2R 2F(2) + rkf”(z)>

= sin(n0 + )2 (0 = )1 () +7°1"(2))

r0z

1.1 Long Multipole

If there is no z behaviour (f = 1, say), then for this to hold for all 7,6 requires k? = n?. Since
k < 0 cases have a singularity at the origin, put £k =n > 1. This gives the field for an infinitely
long multipole:

nsin(nd + ¢)rnt sin((n — 1)8 + v)
¢ = sin(n + )r", B = | ncos(nf +)r"1 =nr" 1| cos((n —1)8 + 1)
0 0
0z

n = 1 corresponds to a dipole, n = 2 to a quadrupole, etc. Also ¢ = 0 gives these in their
normal orientation and 1) = 7 in their skew orientation.

1.2 Normalisation

Although the rest of the paper will evaluate fields for the potential containing ™ above, this
produces fields with magnitude |B| = nr"~!. If multipole strengths are defined as the values of
polynomial coefficients of the field function, then |B| = k,7" may be obtained from the potential
¢ = sin(nf + w)nk—ﬁrnﬂ. If strengths are defined as repeated derivatives of the field function,

then |[d"B/dz"| = d,, (i.e. |B| = %r”) may be obtained from ¢ = sin(nf + 1) (n‘_lfl)!r"“.

1



2 Series Solution

If " is nonzero, the V- V¢ = 0 equation cannot be satisfied by a single term for all . However,
consider a sum of such terms with the same n but different k:

¢ = sin(nd + ) Z ™ fr(2).
k=n

Note the lowest term with k& = n, which dominates the sum near the r = 0 axis, corresponds to
a long 2n-pole modulated by f,(z). The potential must satisfy

0=V V¢ =sin(nd + 1) Zer( )fk() ”(z))
k=n
for all 6, so the RHS sum must be zero (for all r, z). Equating coefficients of r* gives
((k+2)* = n®) frga(2) + fi(2) = 0

for k > n and the remaining coefficients of r"~2 and 7"~1 are 0 and ((n + 1)? — n?)f41(2)
respectively, so fn+1(z) = 0. The above relation gives fi12 as a scaled second derivative of f,
S0 fnt2j+1(2) =0 for all j > 0 and

j . ,
frt2j(2) = (Zl_ll (”"‘22)2—7@2> f9(2).

The coefficients will be written as

~1 N (—1yin!
Cni = H (n+2i)%2 —n? _24(n+i)i (n+g)ly

Setting f,, = f, the full potential satisfying Maxwell’s equations in free space is:

¢ = sm TL9 + '¢ Z n+2 ]fn+2j = sin(n@ + 'Lb) Z anrn—l—ij(?j) (z>

J=0

2.1 Magnetic Field

Using the formula for the gradient of a single term (sin(n6 +)r* f(z)) given at the start of this
note, the magnetic field associated with the series solution is

00 sin(né + ) (n + 25)r" 21 (20 (2)
B=V¢= Z Chj ncos(nf + )rnt2—1 §(29)(z)

z
=0 sin(nf + ¢)r" % FEHD(2) vz
- ' (n+2])51n(n9+1/1)f @9)(2)
— Z Chjr™ 21 n cos(nf + 1) f2)(2)
7=0 r Sln(ne + w) 2J+1 (Z) rlz
~ | nsin(nf + v) f39)(2) 27 sin(nf + ) (2)

=Y Cpyr 1 ncos(nf + ) f*7)(z) T 0

=0 rsin(nf + ) fEH(2) 0z 0 réz
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00 nsin((n — 1)9+w)f(23 (2) 2j sin(nd + ¢) f3)(2) cos 0
= Z Cyr" 21 ncos((n—1)0+ ) fE)(2) | + | 2jsin(nb + ) f3)(z)sind
7=0 rsin(nd + ) f21(2) 0
)

o0 (nsin((n — 1)8 + ) + 2j sin(nf + ) cos 0) f39)(2)
Z G (ncos((n — 1)0 + ) + 27 sin(nf + ) sin 0) £ (2)
j=0 rsin(nf + ) f21D(2)

2.2 Computation Without Trigonometric Formulae

The product formulae for sin and cos give
sin(nf + ) cos§ = 3 sin((n — 1)0 + ¢) + 3 sin((n + 1)0 + ¢
sin(nf + ) sinf = 3 cos((n — 1)0 + ¢) — 3 cos((n + 1) + 1),

which enables the Cartesian field formula to be written as

~—

- (n -+ ) sin((n — 1)0 -+ ) + jsin((n + 18+ $)) /) (2)
=3 Cupr™ 3| (- heos((n = 09+ 4) ol + 10+ )12 )
j=0 rsin(nf + ) f2+D(2)

Note that every instance of cos or sin(nf+1)) is multiplied by a large power of  usually including
r™. This can be used to convert fully to Cartesian coordinates using the complex formulae
rel = r(cosf +isinf) = z + iy
= (reé)" = "™ = 1 (cosnf + isinnb) = (z + iy)",
whence setting ¢, = Re (z + iy)™ and s, = Im (z + iy)" gives
r" cosnl = ¢, and r"sinnf = s,.
These values can be calculated without trigonometry from the recurrence relation
co = 1; so = 0; Cn+41 = TCp — YSn; Sn+1 = YCn + TSy,

which comes from the definition of complex multiplication (z + iy)"*! = (z + iy)(z + iy)"
terms of components. The formula requires a slightly more general form

én = 1" cos(nf + 1) = Rer"e ind lw Sp = r"sin(nf + ¢) = Im rreinfel?

These satisfy a similar recurrence because the repeated multiplication by rel? = z + iy starts

with €% rather than 1:
Co = cos; Sp = sinv; Cny1 = TCp — YSp; Sn+1 = YCn + TSp.

The evaluations of cos and sin are not a problem because they can be precalculated for each
multipole, unlike ¢, and §,, that depend on z,y. The field formula can now be rewritten as

o [ (gt + s S (2)
B= ZanTQJ ((n+j)én-1 _jr%én—&-l)f@])(z)
§=0 §nf(2j+1)(z)

o0 (4 5) (Y 301 + 5 () 80 10) f 29 (2)
= Cuj | ((n+9)(r?) o1 = j(r?) i) [P (2)
I=0 (r2)78n fETHD (2)
where powers of 2 = 22 + y? have been emphasised as they can be calculated without a square
root. Note that negative powers never arise from (r?)’~! when j = 0 because it is multiplied by
7, so disappears.



2.3 Computation Using a 2D Field Map

The only parts of the above formula that depend on 8 are the various ¢, and §,,, which are rela-
tively quick (and unavoidable) to calculate for each evaluation point. Calculating the repeated
derivatives of f and waiting for the infinite sum to converge are, on the other hand, quite slow
but may be precalculated as three functions of just r» and z in the following way:

Sn—1F(r, 2) + 8np1G(r, 2)
B = C'n, IF( T, ) - én+1G(T, Z) )
SpH(r, z)

where

Flr2) = 3" Cugln + 5)(r2)1 £ (2); EZOWJ 2)i1 ) 2),

Jj=0

H(r2) = 3 a2 S (2),

§=0

2.3.1 Universal Field Map

Considering just one end of the magnet, if the fringe field is related to a universal fringe field
function via f(z) = f(z/1), then f(™(z) =1="f"(z/l) and

> r 2 o (2 - (T oz

2+ 1 .
r @2i+1) (Z) _ 1 TZ)
E an(> f <l>_an(l7l ,

where the new functions Fn, Gn, H, depend only on n and the form of f , not [. In terms of
these new functions,

Sn1Fn(r/l, z)1) +§n+1%2(:}'n(r/l,z/l)
B=| ¢ 1E,(r/l, z/l) ent15Gn(r/l, z/1)
SntHy(r/l,2/1)

Unfortunately use of the universal function H,, incurs a square root to calculate %, which the
non-universal forms do not have, assuming they are stored as functions of r2 and z.

2.3.2 Field Map for Magnet Ends Only

In the interior of a long magnet, the field tends towards the expression given earlier:

sin((n-10+4) | [ néus
B=nr""1| cos((n—1)0+7%) | = | nén_1
0 0



This corresponds to F(r,z) = n and G(r,z) = H(r,z) = 0. The lowest-order terms up to 72 in
these sums are:

F(r,z) = Cponf(2) + Cua(n + )i f(2) + ... = nf(2) = 52 f"(2) + ..

B —f”(z) TQf////(Z)

G(r,2z) = Cor f"(2) 4+ Coa2r f" (2) + ... = ntl)  RmiDmty T
T2 " Py
H(2) = Conf () + Coar () o = 1) = 1B

so when f(z) =1 and f/(z) = f”(z) = 0 to some precision, the field calculation may be replaced
by the simple multipole expression. Similarly, when f = f' = f” = 0 to a good approximation,
the field may be given as zero. This means F', G, H only need to be calculated for the transition
region where 0 < f(z) < 1 for each magnet (or end of magnet).

2.3.3 Magnets with Symmetrical Ends

It is common to use the same fringe field for both ends of a magnet of length L, so that
f(z) =g(2) + g(L — z), where g is a sigmoid function going from —% to %, representing one end
of the magnet (e.g. g(z) = %tanh(z/l)). If F, G, H are now calculated using ¢ in place of f,
the magnetic field is given by

§n71(F(7"7 Z) + F(TaL - Z)) + §n+1(G(T‘, Z) + G(Ta L — Z))
B=| ¢ 1(F(r,2)+ F(r,L —2)) —é,41(G(r,2) + G(r,L — 2)) |,
,§n(H(’l“, Z) - H(’l“, L— Z))

noting the sign change for H(r, L — z) because it contains odd derivatives of g.

For the regions where g(z) is almost constant at —3 or 3, F(r,z) = —in or in may be used
respectively and G(r,z) = H(r,z) = 0. If both ¢g(z) and g(L — z) are in a constant region and
they have opposite sign (i.e. far outside the magnet), the B field will be zero and the calculation

should be aborted before calculating §,,_1 etc.



