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1 Previous Result

In a cartesian coordinate system, a particle of charge ¢ and momentum p in a magnetic field B
will follow a curved path according to
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where u = v/v = p/p is the unit direction vector of the particle’s motion [0]. This formula is

an exact expression of the Lorentz force law (without electric field) provided that u, > 0.

This may be manipulated [0 to give the exact evolution of 2/ = u,/u, and y = u,/u, with
respect to z. At no point has the paraxial approximation |2'],|y/| < 1 been used.

2 Curved Coordinate System

Curvature k in the z—z plane is defined such that positively charged particles experience positive
curvature when By > 0. By the Lorentz force law, if motion is in the +z direction and field is
in the +y direction, force on a positive particle will be in the —z direction. This means the 4z
direction is aligned with the +r radial direction for x > 0 (in fact, r = z + %) when the particle
is travelling in the 4z direction. Viewed from ‘above’ (+y), positive curvature corresponds to
clockwise motion with df/ds = —«.

In this treatment, x(s) will be a property of the curved reference coordinate system for the
entire accelerator and not of any individual particle. The variable s will agree with arc length
on the reference curve of the accelerator and planes of constant s will be perpendicular to the
reference curve (up to the axis of curvature). The curvilinear coordinate & replaces z, so that the
reference curve satisfies £ = y = 0, with no change needed to y as there is no vertical curvature.

3 Making s the Independent Variable

Without loss of generality, analysis from this point on will assume the curvilinear and cartesian
axes are momentarily aligned: T with x and s with z. Considering the forward motion in z given
by an increment in s gives dz/ds = 1+ kZ, which equals zero at the centre of curvature & = —%

as expected.



The evolution of u can now be restated in terms of s, remembering that the elements of u
are still relative to the fixed cartesian axes:
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4 Rotation of Basis

The vector w is defined to contain the same direction as u but expressed in the local z,y, s
basis rather than the z,y,z one. At the momentary point of axis-alignment, w = u but the
derivatives differ by a rotation of rate —k:
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5 Conclusion (Vector Form)

Combining the previous two results gives
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where the final line uses the momentary axis alignment. As a cartesian basis can be chosen at
each point, the analysis holds for all s. Setting x = 0 in this formula recovers the result for
cartesian coordinates.

5.1 Cyclotron Radius Check

The form of the above equation means that w is constant if the term in brackets is zero. If
a particle is travelling directly along the reference trajectory, £ = 0 and ws = 1, so w will be
constant (that is, the particle will remain on the reference trajectory) if
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where R = 1/k is the radius of curvature. The relation B = p/qR is the well-known formula for
the cyclotron radius.

6 Geometrical Variables =’ and 3/

In the curvilinear coordinate system there are analogous definitions of 2’ = w;/w, and ¢y =

wy/ws. Following previous work [l], their derivatives are given by
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Next, dw/ds needs to be expressed in terms of ' and y':

1 y/Bs - By dw q y/Bs - By —Ws
—wxB=| B;—2'B; = d—z(l%—mﬁ)f B;i —2'B; | —k| 0
Ws ©’By —y'Bs 5 p By —y'B; Wi

Since w% =1+ a2 +y2,
'Bs — B -1
1 d y S Yy
—d—wzy/l—i—x’?—i—y’? (l—i—mﬁ)g Bi —2'B; | —k| O
Ws As p I,By _ y’B;;; 2!
Finally, combinations of the rows of this vector give
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The differences with the cartesian formula, apart from relabelling of axes, are the second term
and the factor of 1 + k% in the first term; the cartesian formula is recovered by setting x = 0.

6.1 New Derivative of z and y
The variables 2’ and 1/ are still the tangents of angles relative to the forward direction, in other

words they are not equal to dz/ds and dy/ds but rather dZ/dz and dy/dz, recalling that the z
axis is momentarily aligned with s but represents a distance. Thus the equations for updating

T and y are now
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