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1 Motivation

Numerical simulations are typically done with points (macroparticles or grid meshes), or infinite
plane waves (Fourier space) as a basis. However, for some applications involving wave equations,
something in between is needed, which is infinite in neither frequency space nor real space. This
motivates the use of wavelets or wavepackets. In this note, a simple wavepacket that can be
displaced in both frequency and position space (while being localised in both) is described. By
letting the parameters of the wavepacket vary in time, it is already an exact solution of many
non-interacting wave equations.

2 Wavepackets in Wave Equations

In one dimension (x), consider functions of the form eax
2+bx+c, where a, b, c may be complex.

Typically Re a ≥ 0 so the function does not tend to infinity. The centre of the wavepacket is
at x = −Re b/(2Re a). The spatial frequency k = (2Im a)x+ Im b, where a can be chosen to be
real if no chirp is required. The overall constant multiplier of ec may be used for normalisation
purposes.

If the parameters vary as a function of time, functions of the following form are obtained:

f(x, t) = ea(t)x
2+b(t)x+c(t).

Using prime for ∂x and dot for ∂t, derivatives of f have a fairly simple form:

ḟ = (ȧx2 + ḃx+ ċ)f

f ′ = (2ax+ b)f

f ′′ = (2a+ (2ax+ b)2)f = (4a2x2 + 4abx+ (2a+ b2))f.

Consider differential equations of the general form below, which is first-order in time:

ḟ = Af ′′ + (B1x+B0)f
′ + (C2x

2 + C1x+ C0)f.

Substituting the above expressions for the derivatives and dividing throughout by f gives:

ȧx2 + ḃx+ ċ = A(4a2x2 + 4abx+ (2a+ b2)) + (B1x+B0)(2ax+ b) + C2x
2 + C1x+ C0,
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which must be true for all x, so coefficients of powers of x may be equated to give

ȧ = 4Aa2 + 2B1a+ C2

ḃ = 4Aab+B1b+ 2B0a+ C1

ċ = A(2a+ b2) +B0b+ C0.

The equations above determine the time evolution of the parameters a, b, c for f(x, t) to be a
solution of the differential equation; they are mildly nonlinear but are easily integrated numeri-
cally on a computer. Simulating the evolution of three numbers takes much less computational
effort than a whole mesh of numbers, so if the state is well approximated by the sum of a few
wavepackets (the original equation was linear in f), then this is a good basis to use.

The above derivation also explains why certain length polynomials (such as B1x+B0) were
allowed as coefficients in the differential equation: if the highest order term of the derivative of
f in question is below x2, additional factors of x are allowed. The zero-order derivative allows a
quadratic function to be multiplied by f , such as a quadratic potential used in quantum theory.

2.1 Example: Time-Dependent Schrödinger Equation in 1D

The wavefunction ψ(x, t) of a single, non-relativistic quantum (scalar) particle in 1D satisfies
the equation below:

iℏψ̇ =

(
−ℏ2

2m
∂2x + V (x, t)

)
ψ,

which can be rearranged into the form

ψ̇ =
iℏ
2m

ψ′′ +
−i
ℏ
V ψ.

This is an example of the general form in the previous section if

A =
iℏ
2m

, B1 = B0 = 0, C2x
2 + C1x+ C0 =

−i
ℏ
V.

Note that this is only an exact solution for potentials V that are quadratic in x. Behaviour in
other potentials could be approximated by using small wavepackets and approximating V by its
local second-order Taylor series. However, time-varying potentials are allowed, since having the
Cn vary with time does not invalidate the derivation of ȧ, ḃ, ċ.

The equation for the evolution of a is

ȧ =
2iℏ
m
a2 +

−i
ℏ
V2,

where V2 is the coefficient of x2 in the potential.

2.2 Higher-order Generalisation

The wavepacket definition may be extended so that the exponent is a polynomial of order N ,
in which case the method for calculating the time derivatives of the coefficients is analogous.
The expression for f (n) contains an nth order polynomial, so its coefficient in the differential
equation can be an (N − n)th order polynomial.
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2.3 Generalisation to Multiple Dimensions

In multiple dimensions, where x is a vector, wavepackets can be defined in the following way:

exp

∑
i,j

aijxixj +
∑
i

bixi + c

 = ex
TAx+b·x+c.

Here A = (aij) is a matrix, which can be chosen to be symmetric, while b = (bi) is a vector.
Defining

f(x, t) = ex
TA(t)x+b(t)·x+c(t)

gives analogous expressions for the partial derivatives of f :

ḟ = (xT Ȧx+ ḃ · x+ ċ)f

∂if =

2
∑
j

aijxj + bi

 f = (2ai · x+ bi)f

∂i∂jf = ∂i((2aj · x+ bj)f)

= (2aij + (2ai · x+ bi)(2aj · x+ bj))f

= (xT (4aia
T
j )x+ (2biaj + 2bjai) · x+ (2aij + bibj))f.

The general differential equation in 3D to the same order as the one used in 1D is:

ḟ =
∑
i,j

p0,ij∂i∂jf +
∑
i

∑
j

q1j,ixj + q0,i

 ∂if +

∑
i,j

r2ijxixj +
∑
i

r1ixi + r0

 f

= ∇TP0∇f + xTQ1∇f + q0 · ∇f +
(
xTR2x+ r1 · x+ r0

)
f.

Equating terms of the same order in x (after dividing by f) gives:

Ȧ = 4AP0A+ 2 sym(Q1A) +R2

ḃ = 4AP0b+Q1b+ 2Aq0 + r1

ċ = 2 tr(AP0) + bTP0b+ q0 · b+ r0,

where tr(A) =
∑

i aii and sym(A) = 1
2(A + AT ). The symmetrisation is used to keep the

derivative of A symmetrical even though Q1 may not be.

3 Operations on Wavepackets

3.1 Pointwise Operations

3.1.1 Addition

The sum of two wavepackets is in general not another wavepacket (with some exceptions below),
so more complex functions must be represented by a sum

f(x) =
∑
n

eanx
2+bnx+cn .

A constant k can be represented as eln k where ln k is a suitable version of the complex natural
logarithm, so setting a = b = 0, c = ln k gives a wavepacket that can be added to the sum.
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3.1.2 Simplification of Sums

If two wavepackets have equal a and b, then they can be combined:

eax
2+bx+c1 + eax

2+bx+c2 = eax
2+bx (ec1 + ec2) = eax

2+bx+ln(ec1+ec2 ).

If ec1 + ec2 = 0 then the two wavepackets cancel.

3.1.3 Scalar Multiplication

keax
2+bx+c = eax

2+bx+(c+ln k)

−eax2+bx+c = eax
2+bx+(c+πi)

3.1.4 Multiplication of Two Wavepackets

ea1x
2+b1x+c1ea2x

2+b2x+c2 = e(a1+a2)x
2+(b1+b2)x+(c1+c2)

3.1.5 Powers

For real integer k, (
eax

2+bx+c
)k

= ekax
2+kbx+kc.

3.1.6 Modulus and Phase

For real x, ∣∣∣eax2+bx+c∣∣∣ = e(Re a)x2+(Re b)x+Re c;

arg eax
2+bx+c = (Im a)x2 + (Im b)x+ Im c.

3.1.7 Complex Conjugate

For real x,

eax2+bx+c = eāx
2+b̄x+c̄.

3.1.8 Real and Imaginary Parts

For real x,
Re eax

2+bx+c = eax
2+bx+(c−ln 2) + eāx

2+b̄x+(c̄−ln 2);

Im eax
2+bx+c = eax

2+bx+(c−ln 2−π
2
i) + eāx

2+b̄x+(c̄−ln 2+π
2
i).
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3.2 Geometrical Operations

3.2.1 Centre

Every wavepacket with a finite integral has a single point where its modulus is a maximum.
This is

argmax
∣∣∣eax2+bx+c∣∣∣ = argmax e(Re a)x2+(Re b)x+Re c = argmax((Re a)x2 + (Re b)x+Re c).

At the maximum, the derivative 2(Re a)x+Re b will be equal to zero, thus x = −Re b
2Re a .

In multiple dimensions we need to find argmax(xT (ReA)x+(Reb)·x+Re c). Assuming that
A = AT , the vector gradient of this is 2(ReA)x+Reb. This is zero when x = −1

2(ReA)
−1Reb.

3.2.2 Translation

Displacing a wavepacket a distance s gives

ea(x−s)
2+b(x−s)+c = eax

2+(−2as+b)x+(as2−bs+c).

For multiple dimensions and a vector displacement s, this is

e(x−s)TA(x−s)+b·(x−s)+c = ex
TAx+(−2As+b)·x+(sTAs−b·s+c),

assuming A = AT .

3.2.3 Rotation

3.3 Integral Operations

3.3.1 Integral Over All Space

This can be computed by using the identity
∫∞
−∞ e−πx

2
dx = 1.∫ ∞

−∞
eax

2+bx+c dx =

∫ ∞

−∞
ea(x

2+ b
a
x+ c

a) dx

=

∫ ∞

−∞
e
a
(
(x+ b

2a)
2− b2

4a2
+ c
a

)
dx

= ec−
b2

4a

∫ ∞

−∞
ea(x+

b
2a)

2

dx

= ec−
b2

4a

∫ ∞

−∞
eax

2
dx

= ec−
b2

4a

√
−π
a

∫ ∞

−∞
e−πx

2
dx

= ec−
b2

4a

√
−π
a
.

In the case of complex coefficients, the identity
∫∞
−∞ eax

2
dx =

√
−π
a holds as long as Re a < 0.

The shift of origin
∫∞
−∞ ea(x+

b
2a)

2

dx =
∫∞
−∞ eax

2
dx is not intuitively true if b/a is not real.
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However, a contour integration argument shows the infinite line of integration can also be moved
in the imaginary direction without affecting the integral so long as it does not cross a pole (there
are no poles in eQ(x)) and the integral remains convergent.

The case for multiple dimensions is analogous but slightly more complicated; three dimen-
sions will be used here as an example. The basic identity works in multiple dimensions:∫ ∞

−∞
e−πx

2
dx =

∫ ∞

−∞
e−πy

2
dy =

∫ ∞

−∞
e−πz

2
dz = 1

⇒
∫ ∞

−∞
e−πx

2
dx

∫ ∞

−∞
e−πy

2
dy

∫ ∞

−∞
e−πz

2
dz = 1

⇒
∫
R3

e−πx
2
e−πy

2
e−πz

2
dV =

∫
R3

e−πx·x dV = 1.

⇒
∫
R3

e−x·x dV = π3/2,

where the final step is done by a scaling of
√
π in each axis.

The matrix A in the exponent xTAx can be symmetric without loss of generality, thus −A
is also symmetric. Symmetric matrices always factorise as −A = BTB. This means that∫

R3

ex
TAx dV =

∫
R3

e−xTBTBx dV =

∫
R3

e−(Bx)TBx dV.

If A was real, then B is real and this is equal to

1

detB

∫
R3

e−xTx dV =
π3/2√
det(−A)

=

√
π3

det(−A)
=

√
(−π)3
detA

,

where we have used det(−A) = detBT detB = (detB)2 and the fact that det(−A) = (−1)3 detA
where 3 is the number of dimensions of space. The general version of this result incorporates

the value
√

−π
a for one dimension. Subtle point: both B and −B work in the factorisation of

−A, so we choose the one with positive determinant that will not invert the sign of the volume
element and also ensures detB is the positive root

√
det(−A).

If A has complex entries, similar matrix factorisations are possible but it is not intuitively
clear that arguments about scaling the volume element with the determinant work. However, it
is probably correct to rely on the analytic continuation of the real result into the complex plane.

The final step to integrating the full exponent xTAx+b ·x+ c is ‘completing the square’ in
multiple dimensions. Assuming A = AT , consider a displacement d to the quadratic term:

(x+ d)TA(x+ d) = xTAx+ 2dTAx+ dTAd

and note that the linear term is reconstructed if 2dTAx = bTx, which is true if d = 1
2A

−1b.
Now we have

xTAx+ b · x+ c = (x+ d)TA(x+ d)− dTAd+ c
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and ∫
R3

ex
TAx+b·x+c dV =

∫
R3

e(x+d)TA(x+d)−dTAd+c dV

= ec−dTAd

∫
R3

e(x+d)TA(x+d) dV

= ec−
1
4
bTA−1b

∫
R3

ex
TAx dV

= ec−
1
4
bTA−1b

√
(−π)3
detA

.

The complex shifts of the range of integration are allowed as before and note that this formula
incorporates the one-dimensional result (if 3 is replaced by 1).

3.3.2 Inner Product

The standard inner product (f, g) between complex functions is the integral
∫
f̄g over the whole

space. In one dimension,(
ea1x

2+b1x+c1 , ea2x
2+b2x+c2

)
=

∫ ∞

−∞
e(ā1+a2)x

2+(b̄1+b2)x+(c̄1+c2) dx

= e
c̄1+c2− (b̄1+b2)

2

4(ā1+a2)

√
−π

ā1 + a2
.

In multiple dimensions, the analogous substitutions are made into the multidimensional integral-
over-all-space formula.

3.3.3 L2 Norm

The ‘Euclidean’ or L2 norm is defined via ||f || =
√
(f, f) so that

||eax2+bx+c|| =

√∫ ∞

−∞
e(ā+a)x2+(b̄+b)x+(c̄+c) dx

=

√
e2Re c− (2Re b)2

8Re a

√
−π
2Re a

= eRe c− (Re b)2

4Re a
4

√
−π
2Re a

.

The fact that (f, f) =
∫
f̄f =

∫
|f |2 means that ||f ||2 corresponds to the integral of the proba-

bility density for quantum wavefunctions.
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3.3.4 Fourier Transform

If the Fourier transform is defined by f̃(ω) = 1√
2π

∫∞
−∞ f(x)e−iωx dx, then the transform of a 1D

wavepacket, making use of the integral formulae in section 3.3.1, is:

f̃(ω) =
1√
2π

∫ ∞

−∞
eax

2+bx+ce−iωx dx

=
1√
2π

∫ ∞

−∞
eax

2+(b−iω)x+c dx

=
1√
2π
ec−

(b−iω)2
4a

√
−π
a

= ec−
b2−2ibω−ω2

4a

√
−1

2a

= e
ω2

4a
+ ib

2a
ω+(c− b2

4a
− 1

2
ln(−2a)).

This has the form of a wavepacket in ω with parameters

ã =
1

4a
, b̃ =

ib

2a
, c̃ = c− b2

4a
− 1

2
ln(−2a).

Applying these formulae twice gives ˜̃a = a,
˜̃
b = −b and ˜̃c = c, consistent with the fact that the

transform of the transform is f(−x). The inverse transform formula also gives a way to express
a wavepacket as a superposition of waves:

eax
2+bx+c = f(x) =

1√
2π

∫ ∞

−∞
f̃(ω)eiωx dω =

1√
2π

∫ ∞

−∞
eãω

2+b̃ω+c̃eiωx dω.

In three dimensions (although it generalises to any number), the Fourier transform of f(x)
is done on each variable in turn, giving f̃(ω) = 1

(2π)3/2

∫
R3 f(x)e

−iω·x dV . The transform of a

3D wavepacket is then:

f̃(ω) =
1

(2π)3/2

∫
R3

ex
TAx+b·x+ce−iω·x dV

=
1

(2π)3/2

∫
R3

ex
TAx+(b−iω)·x+c dV

=
1

(2π)3/2
ec−

1
4
(b−iω)TA−1(b−iω)

√
(−π)3
detA

= ec+
1
4
ωTA−1ω+ i

2
bTA−1ω− 1

4
bTA−1b

√
(−1

2)
3

detA

= eω
T 1

4
A−1ω+( i

2
A−1b)·ω+(c− 1

4
bTA−1b− 1

2
ln((−2)3 detA)).

This has the form of a wavepacket in ω with parameters

Ã =
1

4
A−1, b̃ =

i

2
A−1b, c̃ = c− 1

4
bTA−1b− 1

2
ln((−2)3 detA).

3.3.5 Wigner Function

In quantum mechanics, the Wigner function of a wavefunction ψ(x) is the following (always
real) function of position x and momentum p:

W (x, p) =
1

πℏ

∫ ∞

−∞
ψ̄(x+ y)ψ(x− y)e2ipy/ℏ dy.
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If ψ is a 1D wavepacket, this becomes

W (x, p) =
1

πℏ

∫ ∞

−∞
eā(x+y)

2+b̄(x+y)+c̄ea(x−y)
2+b(x−y)+ce2ipy/ℏ dy

=
1

πℏ
e2(Re a)x2+2(Re b)x+2Re c

∫ ∞

−∞
e2(Re a)y2+(−4i(Im a)x−2iIm b+2ip/ℏ)y dy

=
1

πℏ
e2(Re a)x2+2(Re b)x+2Re ce−(−4i(Im a)x−2iIm b+2ip/ℏ)2/(8Re a)

√
−π
2Re a

=
1

πℏ
e2(Re a)x2+2(Re b)x+2Re ce(−2(Im a)x−Im b+p/ℏ)2/(2Re a)

√
−π
2Re a

.

This is a positive 2D Gaussian in (x, p) space, with the x dependency (first exponential term)
actually being equal to |ψ(x)|2. Recalling that argψ(x) = (Im a)x2 + (Im b)x + Im c and thus
d argψ(x)

dx = 2(Im a)x+ Im b, this can also be written

W (x, p) =
1

πℏ
|ψ(x)|2e(p/ℏ−

d argψ(x)
dx

)2/(2Re a)

√
−π
2Re a

.

3.4 Splitting/Slicing

The absolute value of a wavepacket (see section 3.1.6) has a Gaussian profile, which we want
to split into smaller Gaussians that add up to approximately the original. The ‘phase’ part
eiImQ(x) can be factored out during this whole process. Additionally, a linear transformation in
space and scaling in amplitude can make the absolute value equal to e−x

2
(or e−|x|2 in multiple

dimensions).

Consider an approximation

e−x
2 ≃

∞∑
n=−∞

cne
−((x−na)/b)2 .

This is a sum of Gaussians regularly spaced by a and having width b < 1 times the original.
The left-hand side integrates to

√
π and each term on the right integrates to cnb

√
π. In the limit

where a is small, in the region near x = 0, there are many Gaussians spaced by a adding up to
a nearly constant value of 1, so we want cnb

√
π ≃ a near x = 0. That makes one choice for the

coefficients
cn =

a

b
√
π
e−(na)2 ,

which simply modulates this by the overall envelope of the Gaussian we are trying to approxi-
mate. For larger b, there will be some spreading in the overall variance, which can be counter-
acted with

cn =
a

b
√
π(1− b2)

e−(na)2/(1−b2).

3.5 Merging

Although the sum of two (or more) wavepackets is usually not another wavepacket, it may
sometimes be desired to merge them if a single wavepacket is a good enough approximation to
the sum.
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4 Wavepackets in Relativistic Wave Equations

When special relativity is taken into account, the set of wavepackets studied so far is no longer
closed under time evolution. However, they may still be used as initial conditions and arbitrary
time evolution in the free wave equation can be calculated by Fourier methods.

4.1 Example: Klein–Gordon Equation (non-quantum)

A relativistic scalar particle field ϕ(x, t) propagates according the the wave equation:

1

c2
ϕ̈ =

(
∇2 − m2c2

ℏ2

)
ϕ,

noting that ϕ is not a wavefunction this time, it is the shape of a single excitation of the scalar
field operator, which is itself quantised. Substituting a plane wave solution ϕ = ei(Ωt+ω·x) gives

−1

c2
Ω2 = −|ω|2 − m2c2

ℏ2
⇒ Ω = ±c

√
|ω|2 + m2c2

ℏ2
.

There are two solutions because the differential equation is second order in time, so the initial
conditions are two pieces of information: ϕ and ϕ̇. The function Ω(ω) is defined to mean the
positive square root in the expression above. One of these solutions corresponds to the opposite
charge anti-particle, which appears to have negative ‘energy’ if the energy operator iℏ∂t from
the Schrödinger equation is used on it. As iℏ∂tϕ = iℏiΩϕ = −ℏΩϕ, the positive Ω solution is
the anti-particle, labelled by a below and the negative Ω solution is the particle, labelled b. The
combined solution can be expressed in Fourier space:

ϕ =
1

(2π)3/2

∫
R3

eiω·x(a(ω)eiΩ(ω)t + b(ω)e−iΩ(ω)t) dω,

ϕ̇ =
1

(2π)3/2

∫
R3

eiω·xiΩ(ω)(a(ω)eiΩ(ω)t − b(ω)e−iΩ(ω)t) dω

ϕt=0 =
1

(2π)3/2

∫
R3

eiω·x(a(ω) + b(ω)) dω,

ϕ̇t=0 =
1

(2π)3/2

∫
R3

eiω·xiΩ(ω)(a(ω)− b(ω)) dω

⇒ ϕ̃t=0 = a(ω) + b(ω),

˜̇
ϕt=0 = iΩ(ω)(a(ω)− b(ω))

⇒ a(ω) =
1

2

(
ϕ̃t=0 +

˜̇
ϕt=0

iΩ(ω)

)
,

b(ω) =
1

2

(
ϕ̃t=0 −

˜̇
ϕt=0

iΩ(ω)

)
.
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With these coefficients known in terms of the initial conditions, the Fourier representation at
any later time can be written:

ϕ̃ = a(ω)eiΩ(ω)t + b(ω)e−iΩ(ω)t

⇒ ϕ̃ =
1

2

(
ϕ̃t=0 +

˜̇
ϕt=0

iΩ(ω)

)
eiΩ(ω)t +

1

2

(
ϕ̃t=0 −

˜̇
ϕt=0

iΩ(ω)

)
e−iΩ(ω)t

=
1

2
(eiΩ(ω)t + e−iΩ(ω)t)ϕ̃t=0 +

1

2iΩ(ω)
(eiΩ(ω)t − e−iΩ(ω)t)

˜̇
ϕt=0

= cos(Ω(ω)t)ϕ̃t=0 +
sin(Ω(ω)t)

Ω(ω)
˜̇
ϕt=0.

If a(ω) and b(ω) can be expressed as 3D wavepackets as defined in section 2.3 (or small sums
of these), the time evolution problem reduces to calculating the Fourier transform of:

ϕ̃ = eω
T Ãω+b̃·ω+c̃eiΩ(ω)t,

showing only the a(ω) part since −t can be substituted for t in the b(ω) terms.

4.1.1 Splitting Scheme

The time evolution is not a simple wavepacket because Ω(ω) is not a quadratic function of ω, but
one approach is to approximate it piecewise by quadratic functions in local areas of frequency
space. If enough sufficiently-overlapping wavepackets are used with the correct normalisation,
this can be an arbitrarily good approximation (see section 3.4). The value of Ω at an offset from
a central frequency ω0 can be written:

Ω(ω0 + ω) = c

(
|ω0 + ω|2 + m2c2

ℏ2

)1/2

= c

(
m2c2

ℏ2
+ |ω0|2 + 2ω0 · ω + |ω|2

)1/2

= c

(
1

c2
Ω(ω0)

2 + 2ω0 · ω + |ω|2
)1/2

=
(
Ω(ω0)

2 + 2c2ω0 · ω + c2|ω|2
)1/2

= Ω(ω0)

(
1 +

2c2

Ω(ω0)2
ω0 · ω +

c2

Ω(ω0)2
|ω|2

)1/2

= Ω(ω0)
(
1 + 2k2ω0 · ω + k2|ω|2

)1/2
,

where k = c
Ω(ω0)

has been defined for brevity. Using the Taylor expansion (1+x)1/2 = 1+ 1
2x−

1
8x

2 + 1
16x

3 +O(x4), the square root becomes

1 +
1

2

(
2k2ω0 · ω + k2|ω|2

)
− 1

8

(
4k4(ω0 · ω)2 + 4k4(ω0 · ω)|ω|2

)
+

1

16

(
8k6(ω0 · ω)3

)
+O(|ω|4)

= 1 + k2ω0 · ω +
k2

2
|ω|2 − k4

2
(ω0 · ω)2 − k4

2
(ω0 · ω)|ω|2 + k6

2
(ω0 · ω)3 +O(|ω|4).

Renaming ω above to ω1, the quadratic part can be incorporated into the existing wavepacket
as a function of ω = ω0 + ω1:

ϕ̃ = eω
T Ãω+b̃·ω+c̃+iΩ(ω)t

≃ e
ωT Ãω+b̃·ω+c̃+iΩ(ω0)

(
1+k2ω0·ω1+

k2

2
|ω1|2− k4

2
(ω0·ω1)2

)
t
.

11



Substituting ω1 = ω − ω0 makes the expression in brackets equal to:

1 + k2ω0 · (ω − ω0) +
k2

2
|ω − ω0|2 −

k4

2
(ω0 · (ω − ω0))

2

= 1 + k2ω0 · ω − k2|ω0|2 +
k2

2

(
|ω|2 − 2ω0 · ω + |ω0|2

)
− k4

2
(ω0 · ω − |ω0|2)2

= 1− k2

2
|ω0|2 +

k2

2
|ω|2 − k4

2
|ω0|4 + k4|ω0|2(ω0 · ω)− k4

2
(ω0 · ω)2,

so that the (approximate) time-evolved parameters of the wavepacket are:

Ã(t) = Ã+ iΩ(ω0)t

(
k2

2
I − k4

2
ω0ω

T
0

)
,

b̃(t) = b̃+ iΩ(ω0)t
(
k4|ω0|2ω0

)
,

c̃(t) = c̃+ iΩ(ω0)t

(
1− k2

2
|ω0|2 −

k4

2
|ω0|4

)
.

Note again that k = c
Ω(ω0)

and these may be turned back into real space with the inverse of the
formula in section 3.3.4:

A =
1

4
Ã−1, b =

−i
2
Ã−1b̃, c = c̃− 1

4
b̃T Ã−1b̃− 1

2
ln((−2)3 det Ã).

4.1.2 Error Bound

The error of the quadratic approximation to Ω(ω0 + ω) used in the previous section is:

E = Ω(ω0)

(
−k

4

2
(ω0 · ω)|ω|2 + k6

2
(ω0 · ω)3

)
+O(|ω|4).

Assuming that the leading order cubic contribution (denoted E3) dominates, an upper bound
on the error can be obtained using the triangle inequality:

|E3| ≤ Ω(ω0)

(∣∣∣∣k42 (ω0 · ω)|ω|2
∣∣∣∣+ ∣∣∣∣k62 (ω0 · ω)3

∣∣∣∣)
≤ Ω(ω0)

(
k4

2
|ω0||ω|3 + k6

2
|ω0|3|ω|3

)

4.1.3 Evolution in Real Space

The previous sections have assumed the wavepacket parameters will be evolved in Fourier space
and only converted back to real space at the end. However, for some applications the wavepackets
may be specified in real space to start with. The time derivatives of the parameters in real and
Fourier space are related by:

Ȧ =
1

4
∂t(Ã

−1), ḃ =
−i
2
∂t(Ã

−1b̃), ċ = ˙̃c− 1

4
∂t(b̃

T Ã−1b̃)− 1

2
∂t ln((−2)3 det Ã).

To evaluate this requires the two formulae ∂t(A
−1) = −A−1ȦA−1 and ∂t detA = detA tr(A−1Ȧ),

as well as the transform formulae such as Ã−1 = 4A and Ã−1b̃ = 2ib to get the right-hand side
mostly in terms of real space again.

Ȧ =
−1

4
Ã−1 ˙̃AÃ−1 = −4A ˙̃AA,
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ḃ =
−i
2

(
∂t(Ã

−1)b̃+ Ã−1 ˙̃b
)
=
i

2
Ã−1 ˙̃AÃ−1b̃− i

2
Ã−1 ˙̃b = −4A ˙̃Ab− 2iA

˙̃
b,

ċ = ˙̃c− 1

4
∂t(b̃

T Ã−1b̃)− 1

2
∂t ln((−2)3 det Ã)

= ˙̃c− 1

4
b̃T∂t(Ã

−1)b̃− 1

2
˙̃
bT Ã−1b̃− 1

2(−2)3 det Ã
(−2)3∂t det Ã

= ˙̃c+
1

4
b̃T Ã−1 ˙̃AÃ−1b̃− i

˙̃
bTb− det Ã tr(Ã−1 ˙̃A)

2 det Ã

= ˙̃c− bT ˙̃Ab− i
˙̃
bTb− 2 tr(A ˙̃A).

The specific time derivatives of the Fourier-space parameters for the Klein–Gordon equation
come from the previous section:

˙̃A = iΩ(ω0)

(
k2

2
I − k4

2
ω0ω

T
0

)
,

˙̃
b = iΩ(ω0)

(
k4|ω0|2ω0

)
,

˙̃c = iΩ(ω0)

(
1− k2

2
|ω0|2 −

k4

2
|ω0|4

)
.

The only ambiguity is how to choose ω0, which is the frequency about which the quadratic
approximation is most accurate. A natural choice is the centre (as defined in section 3.2.1) of
the Fourier-space wavepacket

ω0 = −1

2
(Re Ã)−1Re b̃.

4.2 Example: Dirac Equation (non-quantum)

The spinor field ψα(x, t) of electrons and positrons satisfies the equation iℏγµ∂µψ −mcψ = 0,
using the Einstein summation convention and the standard gamma matrices of particle physics.
This notation suppresses the spinor indices α = 1...4, each spinor component being a complex
number, so the full equation can be written iℏγµαβ∂µψβ −mcψα = 0.

Substituting a plane wave solution ψ = αei(Ωt+ω·x) with α a constant spinor gives

∂0ψ = iΩψ / ∗ ∗/
∂iψ = iωiψ,

so that
−ℏγ0Ωψ − ℏγiωiψ −mcψ = 0.

The exponential term in ψ is never zero, so dividing it out both sides (and changing sign) leaves:

(ℏγ0Ω+ ℏγiωi +mc)α = 0.

The term in brackets is a 4×4 complex matrix that acts on spinors (like the gamma matrices).
A solution with α = 0 would be zero everywhere, so nontrivial solutions require that

det(ℏΩγ0 + ℏωiγi +mcI4) = 0

because the matrix must send some nonzero spinor α to zero.
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Written out in full (using the Dirac representation for γµ), the determinant is∣∣∣∣∣∣∣∣
mc+ ℏΩ 0 ℏω3 ℏω1 − iℏω2

0 mc+ ℏΩ ℏω1 + iℏω2 −ℏω3

−ℏω3 −ℏω1 + iℏω2 mc− ℏΩ 0
−ℏω1 − iℏω2 ℏω3 0 mc− ℏΩ

∣∣∣∣∣∣∣∣
= ((mc)2 − (ℏΩ)2 + (ℏω1)

2 + (ℏω2)
2 + (ℏω3)

2)2 = (m2c2 + ℏ2(|ω|2 − Ω2))2.

So the angular frequency Ω must satisfy

m2c2 + ℏ2(|ω|2 − Ω2) = 0 ⇒ Ω2 = |ω|2 + m2c2

ℏ2
.

5 Wavepackets and Quantum Fields

5.1 Fermionic Fields

Fermionic field operators satsify the canonical anticommutation relations (CAR)

{ψα(x), ψ†
β(y)} = δαβδ

3(x− y) and {ψα(x), ψβ(y)} = {ψ†
α(x), ψ

†
β(y)} = 0,

where {A,B} = AB + BA and spinor indices are shown, since most fermions are spinors.
The zero state also satisfies ψα(x)|0⟩ = 0. States containing particles are created by applying
the ψ† (creation-type) operators to |0⟩. However, a particle existing at only one point is not
differentiable, so define the function-shaped creation operator (and its Hermitian conjugate)

ψ†
α[f ] =

∫
f(x)ψ†

α(x) d
3x, ψα[f ] =

∫
f̄(x)ψα(x) d

3x.

A single application of this gives the state that shall be labelled |fα⟩ = ψ†
α[f ]|0⟩. The normali-

sation of this state works like this:

⟨fα|fα⟩ = ⟨0|
∫
f̄(y)ψα(y) d

3y

∫
f(x)ψ†

α(x) d
3x |0⟩

= ⟨0|
∫∫

f(x)f̄(y)ψα(y)ψ
†
α(x) d

3xd3y |0⟩

= ⟨0|
∫∫

f(x)f̄(y)
(
δααδ

3(y − x)− ψ†
α(x)ψα(y)

)
d3xd3y |0⟩

= ⟨0|
∫∫

f(x)f̄(y)δ3(y − x) d3xd3y |0⟩

=

∫
|f(x)|2 d3x,

using the rearrangement AB = {A,B} − BA with the CAR value, followed by the fact that ψ
states annihilate on |0⟩, so the term ending in ψ can be dropped, leaving only a scalar in the
integral and finally ⟨0|0⟩ = 1. Thus |fα⟩ is normalised if the norm squared of f integrates to
one, which will be assumed from now on.
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It will be useful to know the commutation properties of the wavepacket creation operators:

{ψα[f ], ψ†
β[g]} =

∫∫
f̄(x)g(y){ψα(x), ψ†

β(y)} d
3xd3y

=

∫∫
f̄(x)g(y)δαβδ

3(x− y) d3x d3y

= δαβ

∫
f̄(x)g(x) d3x = δαβ(f, g),

{ψα[f ], ψβ[g]} = {ψ†
α[f ], ψ

†
β[g]} = 0,

where the inner product on functions (f, g) =
∫
f̄(x)g(x) d3x has been used. This gives a faster

way of calculating

⟨fα|fα⟩ = ⟨0|ψα[f ]ψ†
α[f ]|0⟩ = ⟨0|

(
δαα(f, f)− ψ†

α[f ]ψα[f ]
)
|0⟩ = (f, f).

If a two-particle state is written |fα, gβ⟩ = ψ†
β[g]ψ

†
α[f ]|0⟩, then

⟨fα, gβ|fα, gβ⟩ = ⟨0|ψα[f ]ψβ[g]ψ†
β[g]ψ

†
α[f ]|0⟩

= ⟨0|ψα[f ]
(
δββ(g, g)− ψ†

β[g]ψβ[g]
)
ψ†
α[f ]|0⟩

= (f, f)(g, g)− ⟨0|ψα[f ]ψ†
β[g]ψβ[g]ψ

†
α[f ]|0⟩

= (f, f)(g, g)− ⟨0|ψα[f ]ψ†
β[g]

(
δβα(g, f)− ψ†

α[f ]ψβ[g]
)
|0⟩

= (f, f)(g, g)− δβα(g, f)⟨0|ψα[f ]ψ†
β[g]|0⟩

= (f, f)(g, g)− δβα(g, f)δαβ(f, g)

= (f, f)(g, g)− δαβ|(f, g)|2.

If f and g are normalised, then this is 1 − δαβ|(f, g)|2, so the two particle state is normalised
unless α = β and (f, g) ̸= 0. In such ‘overlapping’ cases, the amplitude is reduced: in the case
where f = g, it is reduced to zero.

15


	Motivation
	Wavepackets in Wave Equations
	Example: Time-Dependent Schrödinger Equation in 1D
	Higher-order Generalisation
	Generalisation to Multiple Dimensions

	Operations on Wavepackets
	Pointwise Operations
	Addition
	Simplification of Sums
	Scalar Multiplication
	Multiplication of Two Wavepackets
	Powers
	Modulus and Phase
	Complex Conjugate
	Real and Imaginary Parts

	Geometrical Operations
	Centre
	Translation
	Rotation

	Integral Operations
	Integral Over All Space
	Inner Product
	L2 Norm
	Fourier Transform
	Wigner Function

	Splitting/Slicing
	Merging

	Wavepackets in Relativistic Wave Equations
	Example: Klein–Gordon Equation (non-quantum)
	Splitting Scheme
	Error Bound
	Evolution in Real Space

	Example: Dirac Equation (non-quantum)

	Wavepackets and Quantum Fields
	Fermionic Fields


