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This is probably the first thing I’d suggest anyone learns about adiabatic transitions because
it tells you how a linear system reacts to an arbitrary forcing function. Not all systems are linear
but they are usually locally linear near their stable fixed point. I think Scott Berg pointed out
the relation to the Fourier transform to me and there’s probably literature about this under
generic dynamical systems.

Suppose you normalise your system so that linearly, it is the “circle problem” in complex
numbers:

dz

dt
= iωz.

This has solutions of the form z(t) = Aeiωt for any constant A.

Now consider where you have displaced the string of the pendulum, or the RF bucket or
whatever you’re trying to move adiabatically, by a time-dependent function f(t). The new
equation of motion is:

dz

dt
= iω(z − f(t)).

1 Movement Relative to Origin

Try a solution of the form z(t) = A(t)eiωt. The time derivative is:

dz

dt
=

(
dA

dt
+ iωA

)
eiωt.

Then the original equation becomes:(
dA

dt
+ iωA

)
eiωt = iω(Aeiωt − f(t)).

You can subtract iωAeiωt both sides to get:

dA

dt
eiωt = iω(−f(t)).

Divide by eiωt:
dA

dt
= −iωf(t)e−iωt.

Now integrate from t = 0 to T , assuming we start with z(0) = A(0) = 0:

A(T ) = −iω

∫ T

0
f(t)e−iωt dt

= −iωF{f(t)|[0,T ]}(ω).
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Thus, the amplitude you end up with is proportional to the Fourier transform of the forc-
ing/driving function f(t), evaluated at frequency ω. You may also consider a non-interacting
ensemble with a whole range of ω and as long as the Fourier transform is small over that range,
the final amplitude of all “particles” will be small.

In the case of an RF bucket, the independent variable z is not a particle position but a beam
centroid, or 2nd moment of the beam in the bucket (or even a higher moment provided you give
it the right complex phase).

2 Movement Relative to Moving Point

The A(t) in the last section denoted amplitude from the origin rather than the adiabatically-
moving centre point. We can redefine z(t) as

z(t) = f(t) +A(t)eiωt

to make A measure amplitude from f(t). The time derivative is

dz

dt
=

df

dt
+

(
dA

dt
+ iωA

)
eiωt,

which can be substituted into the equation of motion:

df

dt
+

(
dA

dt
+ iωA

)
eiωt = iω(Aeiωt)

df

dt
+

dA

dt
eiωt = 0

dA

dt
= −df

dt
e−iωt

A(T ) = −
∫ T

0

df(t)

dt
e−iωt dt

= −F

{
df(t)

dt

∣∣∣∣
[0,T ]

}
(ω).

This is subtly different than the previous case, which it would be equal to without the restriction
of the function to [0, T ].

3 Linear Ramp

The above formula may be applied to the case of a linear ramp from f(0) = 0 to f(T ) = X. On
the region t ∈ [0, T ], f(t) = Xt/T and the final amplitude is:

A(T ) = −
∫ T

0

df(t)

dt
e−iωt dt

= −
∫ T

0

X

T
e−iωt dt

= −X
T

[
1

−iω
e−iωt

]T
t=0

=
X

iωT
(e−iωT − 1).
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This is proportional to the total distance X, as expected, and inversely proportional to the time
taken ωT expressed in terms of radians of the periodic cycle. The dimensionless factor e−iωT −1
depends on the total phase ωT in an oscillating way and changes in magnitude from 0 to 2
during this cycle. Thus, for a single frequency system, it is possible to choose a lucky value of
T = 2πn

ω that precisely cancels any perturbation while not necessarily being as slow as the large
T ‘adiabatic’ limit.

For systems with frequency changes, there is an adiabaticity parameter defined as

ε =
1

ω2

∣∣∣∣dωdt
∣∣∣∣ ,

which may be made to agree with the above formula if X is interpreted as a change in relative
frequency, i.e. X = logω. In this case, ignoring the oscillating phase part of the above expression,

|A(T )| ∼ X

ωT
=

1

ω

dX

dt
=

1

ω

d logω

dt
=

1

ω2

dω

dt
∼ ε.

Linear ramps are often not the best choice because smoother functions can have smaller
Fourier components in the large T limit. For example if f(t) was the integral of a Gaussian, then

the Fourier transform of e−
1
2
(t/σ)2 would be taken, giving e−

1
2
(ωσ)2 , which decreases extremely

rapidly as σ (the time scale) increases.

4 Second-Order Real System

Differentiating the complex problem again and taking the real part gives:

dz

dt
= iωz ⇒ d2z

dt2
= −ω2z ⇒ d2x

dt2
= −ω2x,

which is familiar simple harmonic motion, where we have defined x = Re z. The displaced
problem

dz

dt
= iω(z − f(t))

can be differentiated again to give

d2z

dt2
= iω

(
dz

dt
− df

dt

)
= iω

(
iω(z − f(t))− df

dt

)
= −ω2(z − f(t))− iω

df

dt
.

Now assuming f(t) is always real (and ω), taking the real part gives

d2x

dt2
= −ω2(x− f(t)),

which is simple harmonic motion with a variable displacement, as required.

The description of the state of this second-order system requires a second variable, one choice
is the velocity:

v =
dx

dt
= Re

dz

dt
= Re(iωz) = −ω Im z,

implying the complex variable is given as z = x− i vω in terms of the real ones.
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