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1 Dynamics

The beamline consists of drifts of length dn for 1 ≤ n ≤ N , each followed by magnetic kicks
defined by bn(x). The horizontal phase space position before the first drift is (x0, x

′
0), with later

positions given by

xn = xn−1 + dnx
′
n−1

x′n = x′n−1 + p−1bn(xn).

In physical quantities, b = B`q or alternatively B`q/p0 if using normalised p with p = 1
meaning the reference momentum p0. B here is the from the magnetic component By(x).

Vertical dynamics can be analysed as small perturbations δy from the midplane, incorporat-
ing the consequence of ∇ ·B = 0:

δyn = δyn−1 + dnδy
′
n−1

δy′n = δy′n−1 − p−1b′n(xn)δyn.

If you consider the final positions as functions xN = xN (x0, x
′
0, p), x

′
N = x′N (x0, x

′
0, p) and

similarly for δyN , the phase advances are given by

2 cosφx =
∂xN
∂x0

+
∂x′N
∂x′0

2 cosφy =
∂δyN
∂δy0

+
∂δy′N
∂δy′0

.

2 Closed Orbit Evolution

The closed orbit position (xc, x
′
c) at the beginning and end of the beamline (for momentum p)

is defined by

xN (xc, x
′
c, p) = xc

x′N (xc, x
′
c, p) = x′c,
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with δyc = δy′c = 0 by construction because only By fields are present. Because the bn are
general nonlinear functions, these equations must be solved numerically, but once the closed
orbit is known, its variation with momentum may be found by differentiation:

∂xN
∂x0

dxc
dp

+
∂xN
∂x′0

dx′c
dp

+
∂xN
∂p

=
dxc
dp

∂x′N
∂x0

dxc
dp

+
∂x′N
∂x′0

dx′c
dp

+
∂x′N
∂p

=
dx′c
dp

,

where all partial derivatives are evaluated at (xc, x
′
c, p). This forms a 2× 2 matrix system ∂xN

∂x0
− 1 ∂xN

∂x′
0

∂x′
N

∂x0

∂x′
N

∂x′
0
− 1

[ dxc
dp
dx′

c
dp

]
=

[
−∂xN

∂p

−∂x′
N

∂p

]

in terms of the derivatives of the beamline functions xN and x′N . Here it is useful to note the
inverse of a 2× 2 matrix has a relatively simple form[

a b
c d

]−1
=

1

D

[
d −b
−c a

]

where D = ad− bc is the determinant, here

D =

(
∂xN
∂x0

− 1

)(
∂x′N
∂x′0

− 1

)
− ∂xN
∂x′0

∂x′N
∂x0

.

This can be simplified by recalling that the overall mapping (x0, x
′
0) 7→ (xN , x

′
N ) preserves phase

space area, so its Jacobian determinant is unity:

1 =
∂xN
∂x0

∂x′N
∂x′0

− ∂xN
∂x′0

∂x′N
∂x0

.

This allows the product terms in D to be replaced by 1, leaving only linear terms:

D = 2− ∂xN
∂x0

− ∂x′N
∂x′0

= 2− 2 cosφx,

recalling the definition of the horizontal phase advance. This means the closed orbit movement
becomes singular (D = 0) only when cosφx = 1, that is 2πn horizontal phase advance, also
called ‘integer tune’.

Applying the inverse matrix gives the orbit evolution explicitly as

dxc
dp

=
1

D

((
∂x′N
∂x′0

− 1

)(
−∂xN
∂p

)
− ∂xN
∂x′0

(
−∂x

′
N

∂p

))
=

1

D

((
1− ∂x′N

∂x′0

)
∂xN
∂p

+
∂xN
∂x′0

∂x′N
∂p

)
dx′c
dp

=
1

D

(
∂x′N
∂x0

∂xN
∂p

+

(
1− ∂xN

∂x0

)
∂x′N
∂p

)
.

The required partial derivatives can be evaluated starting with

∂x0
∂x0

= 1
∂x0
∂x′0

= 0
∂x0
∂p

= 0
∂x′0
∂x0

= 0
∂x′0
∂x′0

= 1
∂x′0
∂p

= 0,
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and proceeding for n ≥ 1 via the chain rule:

∂xn
∂x0

=
∂xn−1
∂x0

+ dn
∂x′n−1
∂x0

(similarly for x′0 and p)

∂x′n
∂x0

=
∂x′n−1
∂x0

+ p−1b′n(xn)
∂xn
∂x0

(similarly for x′0)

∂x′n
∂p

=
∂x′n−1
∂p

− p−2bn(xn) + p−1b′n(xn)
∂xn
∂p

.

For brevity it is useful to introduce the (de)focussing strengths kn = p−1b′n(xn) and the quadratic
term in inverse momentum qn = −p−2bn(xn) to remove minus signs.

2.1 N = 2 case

The simplest cell with stable focussing in both planes contains two kicks. The expressions above
can be evaluated more explicitly.

∂x1
∂x0

= 1
∂x1
∂x′0

= d1
∂x1
∂p

= 0

∂x′1
∂x0

= k1
∂x′1
∂x′0

= 1 + k1d1
∂x′1
∂p

= q1

∂x2
∂x0

= 1 + d2k1
∂x2
∂x′0

= d1 + d2(1 + k1d1)
∂x2
∂p

= d2q1

∂x′2
∂x0

= k1 + k2(1 + d2k1)

∂x′2
∂x′0

= 1 + k1d1 + k2(d1 + d2(1 + k1d1))

∂x′2
∂p

= q1 + q2 + k2d2q1.

The x2 and x′2 results from here can be put into the 2 × 2 matrix system for the closed orbit
movement with p. The determinant of the matrix is

D = 2− ∂x2
∂x0
− ∂x′2
∂x′0

= 2− (1 + d2k1)− (1 + k1d1 + k2(d1 + d2(1 + k1d1)))

= −d2k1 − k1d1 − k2d1 − k2d2 − k2d2k1d1
= −(d1 + d2)(k1 + k2)− d1d2k1k2.

Now the expressions for the closed orbit movement itself:

dxc
dp

=
1

D

((
1− ∂x′2

∂x′0

)
∂x2
∂p

+
∂x2
∂x′0

∂x′2
∂p

)
= D−1(−(k1d1 + k2(d1 + d2(1 + k1d1)))d2q1 + (d1 + d2(1 + k1d1))(q1 + q2 + k2d2q1))

= D−1(−k1d1d2q1 + (d1 + d2(1 + k1d1))(−k2d2q1 + q1 + q2 + k2d2q1))

= D−1((d1 + d2)(q1 + q2) + d1d2k1q2)
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dx′c
dp

=
1

D

(
∂x′2
∂x0

∂x2
∂p

+

(
1− ∂x2

∂x0

)
∂x′2
∂p

)
= D−1((k1 + k2(1 + d2k1))d2q1 − d2k1(q1 + q2 + k2d2q1))

= D−1d2(k1q1 + k2q1 + k2d2k1q1 − k1q1 − k1q2 − k1k2d2q1)
= D−1d2(k2q1 − k1q2).

3 Phase Advance Evolution

To find the change of the phase advances as momentum varies, it is important to remember that
the closed orbit where they are evaluated is also moving. This gives the total derivative in p the
following form:

d

dp
(2 cosφx) =

d

dp

∂xN
∂x0

+
d

dp

∂x′N
∂x′0

=
∂2xN
∂x02

dxc
dp

+
∂2xN
∂x0∂x′0

dx′c
dp

+
∂2xN
∂x0∂p

+
∂2x′N
∂x0∂x′0

dxc
dp

+
∂2x′N
∂x′0

2

dx′c
dp

+
∂2x′N
∂x′0∂p

=

(
∂2xN
∂x02

+
∂2x′N
∂x0∂x′0

)
dxc
dp

+

(
∂2xN
∂x0∂x′0

+
∂2x′N
∂x′0

2

)
dx′c
dp

+
∂2xN
∂x0∂p

+
∂2x′N
∂x′0∂p

.

Expanding the expressions for the closed orbit derivatives does not appear to yield additional
simplification without substituting a specific value for N .

Now the second partial derivatives of the beamline functions are required. For n = 0 they
are all zero and for n ≥ 1 the chain rule gives:

∂2xn
∂x02

=
∂2xn−1
∂x02

+ dn
∂2x′n−1
∂x02

(similarly for all ∂α∂β)

∂2x′n
∂x02

=
∂2x′n−1
∂x02

+ k′n

(
∂xn
∂x0

)2

+ kn
∂2xn
∂x02

(similarly for α, β ∈ {x0, x′0})

∂2x′n
∂x0∂p

=
∂2x′n−1
∂x0∂p

+ q′n
∂xn
∂x0

+ k′n
∂xn
∂x0

∂xn
∂p

+ kn
∂2xn
∂x0∂p

(similarly for ∂x′0).

Here the quantities k′n = p−1b′′n(xn) and q′n = −p−2b′n(xn) are the derivatives with respect to
xn of the unprimed versions. These second derivatives only achieve a nonzero value through
coupling from the first-order derivatives. N.B. q′n = −kn/p so kiq

′
j = q′ikj .

3.1 N = 2 case

The second derivatives are evaluated below in the case of the two-element cell. This calculation
and the recurrence relation that generated it have been implemented as a Mathematica workbook
to check the formulae below.

∂2x1
∂α∂β

= 0

∂2x′1
∂x02

= k′1
∂2x′1
∂x0∂x′0

= k′1d1
∂2x′1
∂x′0

2 = k′1d
2
1

∂2x′1
∂x0∂p

= q′1
∂2x′1
∂x′0∂p

= q′1d1

∂2x2
∂x02

= d2k
′
1

∂2x2
∂x0∂x′0

= d2k
′
1d1

∂2x2

∂x′0
2 = d2k

′
1d

2
1

∂2x2
∂x0∂p

= d2q
′
1

∂2x2
∂x′0∂p

= d2q
′
1d1
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∂2x′2
∂x02

= k′1 + k′2 (1 + d2k1)
2 + k2d2k

′
1

∂2x′2
∂x0∂x′0

= k′1d1 + k′2(1 + d2k1)(d1 + d2(1 + k1d1)) + k2d2k
′
1d1

∂2x′2
∂x′0

2 = k′1d
2
1 + k′2 (d1 + d2(1 + k1d1))

2 + k2d2k
′
1d

2
1

∂2x′2
∂x0∂p

= q′1 + q′2(1 + d2k1) + k′2(1 + d2k1)d2q1 + k2d2q
′
1

∂2x′2
∂x′0∂p

= q′1d1 + q′2(d1 + d2(1 + k1d1)) + k′2(d1 + d2(1 + k1d1))d2q1 + k2d2q
′
1d1

These may be used to evalulate the change in horizontal phase advance:

d

dp
(2 cosφx) =

(
∂2x2
∂x02

+
∂2x′2
∂x0∂x′0

)
dxc
dp

+

(
∂2x2
∂x0∂x′0

+
∂2x′2
∂x′0

2

)
dx′c
dp

+
∂2x2
∂x0∂p

+
∂2x′2
∂x′0∂p

=
(
d2k
′
1 + k′1d1 + k′2(1 + d2k1)(d1 + d2(1 + k1d1)) + k2d2k

′
1d1
) dxc

dp
+(

d2k
′
1d1 + k′1d

2
1 + k′2 (d1 + d2(1 + k1d1))

2 + k2d2k
′
1d

2
1

) dx′c
dp

+

d2q
′
1 + q′1d1 + q′2(d1 + d2(1 + k1d1)) + k′2(d1 + d2(1 + k1d1))d2q1 + k2d2q

′
1d1.

At this point, further simplifications are possible if the k
(′)
n and q

(′)
n terms are replaced with their

definitions in terms of derivatives of bn(xn) and the beam momentum p. Mathematica gives:

d

dp
(2 cosφx) =

d21
((
b2b
′′
2 − 2b′22

)
b′21 + b1b

′2
2 b
′′
1

)
d22

−pd1(d1 + d2)
(
3b′2b

′2
1 +

(
3b′22 − (b1 + 2b2)b

′′
2

)
b′1 − (2b1 + b2)b

′
2b
′′
1

)
d2

−p2(d1 + d2)
2
(
b′21 + 2b′2b

′
1 + b′22 − (b1 + b2) (b′′1 + b′′2)

)
p3 (d1d2b′1b

′
2 + p(d1 + d2) (b′1 + b′2))

,

with the form of D (and some powers of p) appearing on the denominator. The second derivatives
b′′n are only linearly involved in this expression and may be separated out:

p5D
d

dp
(2 cosφx) = 2d21d

2
2b
′
1
2b′2

2 + 3pd1d2 (d1 + d2) b
′
1

(
b′1 + b′2

)
b′2 + p2 (d1 + d2)

2 (b′1 + b′2
) 2

−b′′1
(
p (d1 + d2) + d1d2b

′
2

) (
p (b1 + b2) (d1 + d2) + b1d1d2b

′
2

)
−b′′2

(
p (d1 + d2) + d1d2b

′
1

) (
p (b1 + b2) (d1 + d2) + b2d1d2b

′
1

)
.

In a situation where φx is required to be constant, the left-hand side is zero (and D 6= 0
by construction), so this provides one linear constraint on {b′′1(x1), b

′′
2(x2)} in terms of lower

derivatives of bn at those locations and p.

4 Vertical Phase Advance

The closed orbit is δyc = δy′c = 0 in the vertical plane by construction (there are no vertical
magnetic deflections for δy = 0) but the phase advance given by

2 cosφy =
∂δyN
∂δy0

+
∂δy′N
∂δy′0

must still be calculated in terms of the derivatives of the beamline function for the vertical plane.
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The recurrence relation starts with

∂δy0
∂δy0

= 1
∂δy0
∂δy′0

= 0
∂δy′0
∂δy0

= 0
∂δy′0
∂δy′0

= 1

and for n ≥ 1 the chain rule gives:

∂δyn
∂δy0

=
∂δyn−1
∂δy0

+ dn
∂δy′n−1
∂δy0

(similarly for δy′0)

∂δy′n
∂δy0

=
∂δy′n−1
∂δy0

− p−1b′n(xn)
∂δyn
∂δy0

(similarly for δy′0)

=
∂δy′n−1
∂δy0

− kn
∂δyn
∂δy0

.

This is a completely linear system, which can be expressed in terms of the product of 2 × 2
matrices containing dn and kn.

The evolution of 2 cosφy with momentum starts simpler than the horizontal case because

the position at which derivatives of δy
(′)
N (δy0, δy

′
0, p) are evaluated does not change with p:

d

dp
(2 cosφy) =

∂2δyN
∂δy0∂p

+
∂2δy′N
∂δy′0∂p

.

The values of kn, however, do change with p as the closed orbit shifts horizontally:

∂2δyn
∂δy0∂p

=
∂2δyn−1
∂δy0∂p

+ dn
∂2δy′n−1
∂δy0∂p

(similarly for δy′0)

∂2δy′n
∂δy0∂p

=
∂2δy′n−1
∂δy0∂p

− dkn
dp

∂δyn
∂δy0

− kn
∂2δyn
∂δy0∂p

(similarly for δy′0)

dkn
dp

= −p−2b′n(xn) + p−1b′′n(xn)
dxn
dp

= q′n + k′n
dxn
dp

dxn
dp

=
∂xn
∂x0

dxc
dp

+
∂xn
∂x′0

dx′c
dp

+
∂xn
∂p

.

The total derivative of xn appears for the first time because the vertical equations assume the
horizontal closed orbit motion at each magnetic kick has already been determined. Note that
the closed orbit derivatives only appear multiplied by first derivatives of δy, so fortunately will
not become squared or cubed when the recurrence is evaluated.

4.1 N = 2 case

The calculation has similar complexity to the one for the horizontal plane and was done in
Mathematica. The end result with second order derivatives of b factored out is:

p5D
d

dp
(2 cosφy) = −

(
d1d2b

′
1b
′
2 + p(d1 + d2)(b

′
1 + b′2)

) (
p((d2 + 1)b′1 + b′2)− 2d2b

′
1b
′
2

)
+b′′1

(
d2p+ p− d2b′2

) (
p(b1 + b2)(d1 + d2) + b1d1d2b

′
2

)
+b′′2

(
p− d2b′1

) (
p(b1 + b2)(d1 + d2) + b2d1d2b

′
1

)
.
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5 Tune-Fixing Equations

Having expressed the tune variations in the form

d

dp
(2 cosφx) = cx −

N∑
n=1

axnb
′′
n(xn)

d

dp
(2 cosφy) = cy −

N∑
n=1

aynb
′′
n(xn),

where c(x,y) and a(x,y)n depend on bi(xi) and b′i(xi) only, setting the tune variations to zero
produces a system with two linear constraints on the b′′n(xn):

[
ax1 ax2 · · · axN
ay1 ay2 · · · ayN

]
b′′1(x1)
b′′2(x2)

...
b′′N (xN )

 =

[
cx
cy

]
.

As the b′′n are evaluated at different points, this system of coupled second-order differential
equations cannot be solved as usual with x as the independent variable. Choosing to integrate
with respect to p allows the field derivatives to be expressed as

b′n(xn(p)) =
dbn
dp

(
dxn
dp

)−1
=

dbn
dp

(
∂xn
∂x0

dxc
dp

+
∂xn
∂x′0

dx′c
dp

+
∂xn
∂p

)−1
,

where the closed orbit derivatives can be found from only first order derivatives of b and

b′′n(xn(p)) =
db′n
dp

(
dxn
dp

)−1
,

which does not need to be expanded further provided dxn
dp is being calculated as the integration

progresses.

5.1 Initial Conditions

The integration will start from a particular momentum p = p0 and since the equation is second
order, both b0n = bn(xn(p0)) and b′0n = b′n(xn(p0)) need to be defined. Also required are closed
orbit coordinates (xc(p0), x

′
c(p0)) that are consistent with the lattice at that momentum. With

the magnetic kicks fixed by assumption, for 1 ≤ n ≤ N the dynamics satisfy

xn = xn−1 + dnx
′
n−1

x′n = x′n−1 + p−10 b0n,

therefore

x′n = x′0 + p−10

n∑
i=1

b0i

xn = x0 +
n∑

i=1

dix
′
i−1

= x0 +
n∑

i=1

di

x′0 + p−10

i−1∑
j=1

b0j


= x0 + x′0

n∑
i=1

di + p−10

n−1∑
i=1

b0i

n∑
j=i+1

dj .
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If the remaining distances from kick 0 ≤ n < N to the end of the beamline (n = 0 being the
start) are written as

∆n =
N∑

i=n+1

di,

then the conditions on the closed orbit (setting x
(′)
0 = x

(′)
N = x

(′)
0c ) are:

0 =
N∑

n=1

b0n

0 = x′0c∆0 + p−10

N−1∑
n=1

b0n∆n.

The first of these says the magnetic kicks have to sum to zero to keep x′ the same as it started
the beamline, while the second defines a value of x′0c that ensures there is no x offset. This
leaves the b0n with N − 1 free parameters, the b′0n with N and x0c providing 1 additional free
parameter, for a total of 2N . The choice of p0 is not counted as a free parameter because it
could be used to pick a different integration starting point on exactly the same solution.

5.2 Integration

At any given value of p, the vector of 2N + 2 integration variables (xc, x
′
c, bn, b

′
n) will need to

have its first derivative with respect to p calculated. This can be done with the steps below.

1. Use the recurrence relation at the end of section 2 to evaluate ∂(xn,x′
n)

∂(x0,x′
0,p)

for n ≤ N .

2. Use the other formulae in section 2 to calculate D and then dxc
dp and dx′

c
dp . Because φx

is supposed to be fixed, D should be a constant to within the accuracy of numerical
integration.

3. Calculate dxn
dp for all n using the formula in section 4.

4. The required derivatives dbn
dp are now given by b′n

dxn
dp .

5. Evaluate the coefficients c(x,y) and a(x,y)n using the formulae at the end of sections 3.1 and
4.1, or similar Mathematica output for N > 2.

6. Using N − 2 arbitrary functions of p (if necessary), find a specific solution to the linear
system for b′′n given in section 5.

7. The remaining derivatives db′n
dp are given by b′′n

dxn
dp .

Overall, then, the integration requires an initial momentum p0 (does not affect the solution),
2N independent initial values and N−2 arbitrary functions of p during integration to supply the
degree of choice left in system for b′′n that is underconstrained for N ≥ 3. Since D is constant, the
integer tune situation will not limit the range of integration, but two other situations may occur.
Firstly, if the N -vectors [axn] and [ayn] become scalar multiples of each other, then the linear
system for the b′′n may not have a solution. Secondly, if dxn

dp changes sign for any n, then the
solution is no longer physical if different magnetic field strengths bn(xn) are now being defined
at points that xn(p) has already visited.
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In step 5, it may be possible to evaluate most of the recurrence for the second order derivatives

with the current numerical values of b
(′)
n , but as the b′′n are unknowns, the coefficients of those

(appearing from the k′n terms) will have to be separated out. This would allow the solution for
higher numbers (N) of beamline elements without using Mathematica or having the resulting
combinatorial explosion in the size of the equations.
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