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1 Introduction

/**/Motivation, VFFAGs, adjustment (cite ’62 paper and VEMMA report), relativistic cyclotron-
like operation

2 Pure Strong Focussing Case

Assume particles of momentum p have a closed orbit of mean radius r(p) and height y(p). In
an isochronous machine the revolution period T is fixed and

T =
2πr

βc
⇒ r(p) =

β(p)cT

2π
= β(p)R, where R =

cT

2π
.

To maintain a mean radius r for particles of momentum p (and charge q and mass m) requires
a mean bending field

B =
p

qr
=
mβγc

qβR
=
mc

qR
γ ⇒ B(p) = γ(p)B0, where B0 =

2πm

qT
.

If the focussing structure also ‘scales’, the integrated field gradient when normalised to mo-
mentum (B′l/p) should be constant per cell. Scaling ensures similarity between optical beta
functions at all energies and is a sufficient condition for fixed tunes (but not a necessary condi-
tion in lattices with three or more lenses [1]).

The machine is assumed to consist of a large number of cells each occupying angle Θ around
the y axis. B′ is defined as dBy/ds where s is the arc length of the orbit excursion in (r, y). As
all bending is about the y axis, there is only a By component to the mean bending field.

The assumption of a large number of cells ensures that the ring tune is dominated by strong
(alternating gradient) focussing and not the single unit of horizontal tune from the coordinate
change of rotating around the ring (weak focussing). The analysis is more complicated when
weak focussing is included, particularly since the gradient B′ is in general at some angle between
normal and skew, but the weak focussing remains in the horizontal plane, so there is coupling
between transverse planes.

The cell length is given by l = rΘ, so the normalised integrated gradient is

B′l

p
=
B′rΘ

p
=
B′βRΘ

mβγc
=
RΘ

mc

B′

γ
.
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For this to be constant, B′(p) = γ(p)B′0 for some gradient B′0, but it is also true that

B′ =
dB

ds
=

dγ

ds
B0 = γB′0 ⇒ dγ

ds
=
B′0
B0

γ ⇒ γ = e(B
′
0/B0)s,

for an appropriate choice of s origin. This gives the spatial field and gradient profiles

B(s) = B0 e(B
′
0/B0)s, B′(s) = B′0 e(B

′
0/B0)s.

Previous VFFAG papers [2, 3] have defined the exponential rate of field increase k = B′0/B0,
which has units of inverse length. Here it will be informative to consider the ‘scaling length’ in
which the field increases by a factor of e instead: S = 1/k = B0/B

′
0.

Now that B, B′, γ (hence p) and s are all related, all that remains is to find the shape of
the orbit excursion in (r, y) space. The link with that space is the radius equation

r = βR = R
√

1− γ−2 = R

√
1− e−2(B

′
0/B0)s.

Differentiating gives

dr

ds
=

R

2
√

1− γ−2
2(B′0/B0) e−2(B

′
0/B0)s

=
R

2β
2(B′0/B0)γ

−2

=
R

βγ2
B′0
B0

=
1

βγ2
R

S
.

However, this value tends to infinity at low energy, which is not possible since dr/ds = cos θ ≤ 1,
where θ is the angle of the orbit excursion with 0 being horizontal and 90◦ vertical.

2.1 Fundamental Lower Bound on Energy

dr

ds
=

1

βγ2
R

S
≤ 1 ⇒ βγ2 ≥ R

S
.

/**/Discuss, table 10,20,50,100,150,200,300,400,500,600,800,1000 MeV, pipe-like machines
inefficient, could use in conjuction with cyclotron, no problem with overfocussing as per hori-
zontal isochronous FFAG

2.2 ‘Obvious’ Restriction on Tune Change

/**/Gluing machines together
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2.3 Visualising the Orbit Excursion

3 Smooth Focussing Analysis including Weak Focussing

4 Spiral and Other Machine Types
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