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1 Dynamics

This note uses some of the same notation as [1], which is defined again in this section. However,
the goal here is to derive the optical functions βx,y and αx,y in a transfer line, rather than
determining or fixing the tunes of a periodic system.

The beamline consists of drifts of length dn for 1 ≤ n ≤ N , each followed by magnetic kicks
defined by bn(x). The horizontal phase space position before the first drift is (x0, x

′
0), with later

positions given by

xn = xn−1 + dnx
′
n−1

x′n = x′n−1 + p−1bn(xn).

In physical quantities, bn(x) = −Byn(x, 0)`q or alternatively −Byn(x, 0)`q/p0 if using nor-
malised p with p = 1 meaning the reference momentum p0.

Considering a nearby particle that is at (xn + δxn, x
′
n + δx′n) when the original is at (xn, x

′
n)

gives the evolution of small variations:

δxn = δxn−1 + dnδx
′
n−1

δx′n = δx′n−1 + p−1b′n(xn)δxn.

Vertical dynamics can be analysed as small perturbations δy from the midplane, incorporat-
ing the consequence of ∇ ·B = 0:

δyn = δyn−1 + dnδy
′
n−1

δy′n = δy′n−1 − p−1b′n(xn)δyn.

2 Beam Optical Functions

Define the phase space displacement from the centre of the beam s = (δx, δx′) and consider the
covariance matrix C = 〈ssT 〉, where angle brackets indicate averaging over all particles in the
beam. Under a linear mapping s 7→ As, the covariance matrix changes as C 7→ ACAT . The
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RMS emittance is defined as ε =
√

detC and the optical functions are defined as scaled elements
of C:

C = ε

[
β −α
−α γ

]
.

The definition of ε ensures that the matrix on the right has a determinant of 1, so that βγ−α2 =
1, or γ = (1 + α2)/β. Thus the beam covariance matrix is entirely determined by ε, α and β,
with the emittance being the only thing that is affected by uniform scaling of the beam in phase
space. This discussion has considered the (x, x′) plane but optical functions also exist for the
(y, y′) plane by defining s = (δy, δy′) at the start. The beta functions for the two planes are
distinguished as βx and βy for example.

2.1 Drift

The phase space displacement after drift dn (but before the magnetic kick bn) is[
δxn
δx′n−1

]
=

[
δxn−1 + dnδx

′
n−1

δx′n−1

]
=

[
1 dn
0 1

] [
δxn−1
δx′n−1

]
,

so the drift has transfer matrix A =

[
1 dn
0 1

]
. The covariance matrix after the drift will be

ACAT =

[
1 dn
0 1

]
ε

[
β −α
−α γ

] [
1 0
dn 1

]

= ε

[
β − dnα −α+ dnγ
−α γ

] [
1 0
dn 1

]

= ε

[
β − 2dnα+ d2nγ −α+ dnγ
−α+ dnγ γ

]
.

The drift matrix A (or any transfer matrix) does not change detC or ε, so the new values of the
optical functions can be found by equating entries:

βdrift(dn, α, β) = β − 2dnα+ d2nγ = β − 2dnα+ d2n(1 + α2)/β

αdrift(dn, α, β) = α− dnγ = α− dn(1 + α2)/β.

2.2 Kick

The phase space displacement after kick bn is[
δxn
δx′n

]
=

[
δxn

δx′n−1 + p−1b′n(xn)δxn

]
=

[
1 0

p−1b′n(xn) 1

] [
δxn
δx′n−1

]
,

so the kick has transfer matrix A =

[
1 0
k 1

]
, where we define k = p−1b′n(xn). The covariance

matrix after the kick will be

ACAT =

[
1 0
k 1

]
ε

[
β −α
−α γ

] [
1 k
0 1

]
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= ε

[
β −α

kβ − α −kα+ γ

] [
1 k
0 1

]

= ε

[
β kβ − α

kβ − α k2β − 2kα+ γ

]
.

Equating entries gives the new values of the optical functions:

βkick(k, α, β) = β

αkick(k, α, β) = α− kβ.

In terms of physical quantites, k = −p−1B′yn(xn, 0)`q for the (x, x′) phase space plane and the
negative of this for the (y, y′) plane.

3 Optimisation

The problem is having multiple beams of different momenta going through multiple generalised
magnets and trying to match both the beam trajectory and optical functions to a goal at the
exit for each beam. At a given point in the lattice, each beam is described to first order by
the variables u = (x, x′, βx, αx, βy, αy, p), assuming that the beam centres do not leave the
y = 0 plane and emittance is an external constant (it does not affect the optics). These groups
of variables can be evolved through drifts and kicks in the lattice using the formulae in the
previous two sections. The momentum p can be different per beam but does not change in value
when going through magnetic lattice elements.

The initial conditions are a list of beams u0i at the start of the lattice, where i ranges over
all beams. The goal is to achieve uNi ' ûi at the end of the lattice, where N is the index of the
final point in the transfer line and ûi is a list of ideal output beams.

3.1 Figure of Merit

This optimisation has multiple objectives: matching 6 parameters per beam. Some optimisers
work better when given a vector of all the objectives rather than a single figure of merit to
minimise. A suitable vector can be made out of difference vectors ∆(uNi, ûi) between the
output beams and the goals, where

∆(u, û) =

(
x− x̂
X

,
x′ − x̂′

Θ
, lnβx − ln β̂x, αx − α̂x, lnβy − ln β̂y, αy − α̂y

)
.

Here, X is a scale length (e.g. 1cm) and Θ a scale angle (e.g. 0.01rad) chosen to be about as
‘bad’ as a unit mismatch in α or a factor of e in β. This is needed because some algorithms, such
as those using SVD [2], do care about the relative size of the vector entries and try to minimise∑

i |∆(uNi, ûi)|2.

References

[1] Fixing the Tune of Nonscaling FFAGs in the Thin Lens Paraxial Approximation, S.J. Brooks,
available from http://stephenbrooks.org/ap/report/2010-5/tunefix.pdf (2010).

3

http://stephenbrooks.org/ap/report/2010-5/tunefix.pdf


[2] Bounded Approximate Solutions of Linear Systems using SVD, S.J. Brooks, available from
http://stephenbrooks.org/ap/report/2015-3/svdboundedsolve.pdf (2015).

4

http://stephenbrooks.org/ap/report/2015-3/svdboundedsolve.pdf

	Dynamics
	Beam Optical Functions
	Drift
	Kick

	Optimisation
	Figure of Merit


