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1 Assumptions

The wire segment in question travels in a straight line from position a to b and carries current
I in the direction towards b. The magnetic field of this segment alone will not be Maxwellian
because the current does not satisfy the continuity equation. However, the field sum of a loop
of such wires will be.

2 Derivation for Vector Potential

The Biot-Savart law for the magnetic potential is

A(x) =
µ0

4π

∫
I

|r|
ds,

where r is the vector to x from the relevant point on the conductor. The parametrisation

r = x− (a + λ(b− a)), ds = |b− a| dλ, I =
I(b− a)

|b− a|
,

for λ ∈ [0, 1], can be used. Now
I ds = I(b− a) dλ

⇒ A(x) =
µ0I

4π
(b− a)

∫ 1

0

dλ

|r|
.

The length of r can be calculated via

|r|2 = r · r = |x− a|2 − 2λ(x− a) · (b− a) + λ2 |b− a|2

and the scalar integral from

∫ 1

0

dx√
ax2 + bx+ c

=

 ln
(
2
√
a
√
ax2 + bx+ c+ 2ax+ b

)
√
a

x=1

0

=
1√
a

(
ln

(
2
√
a(a+ b+ c) + 2a+ b

)
− ln

(
2
√
ac+ b

))
.

Some further simplifications may be possible since

√
a = |b− a|
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√
c = |x− a|

√
a+ b+ c =

√
|b− a|2 − 2(x− a) · (b− a) + |x− a|2 = |x− b|

2a+ b = 2 |b− a|2 − 2(x− a) · (b− a) = −2(x− b) · (b− a)

so that

A(x) =
µ0I

4π
(b− a)

1

|b− a|

(
ln (2 |b− a| |x− b| − 2(x− b) · (b− a))

− ln (2 |b− a| |x− a| − 2(x− a) · (b− a))

)
=

µ0I

4π
ln

( |x− b| |b− a| − (x− b) · (b− a)

|x− a| |b− a| − (x− a) · (b− a)

)
=

µ0I

4π
ln

( |x− b| − (x− b) · u
|x− a| − (x− a) · u

)
,

if the unit vector along the wire direction is written u = b−a
|b−a| .

2.1 Special case: wire pointing at evaluation point

If x is colinear with ab, the expressions in the logarithms above become zero, so the previous
formula cannot be used. To see where things went wrong, reexamine the formula for |r| in the
case where x is beyond the b end of the line:

|r|2 = |x− a|2 − 2λ(x− a) · (b− a) + λ2 |b− a|2

= |x− a|2 − 2λ |x− a| |b− a|+ λ2 |b− a|2

= (|x− a| − λ |b− a|)2 .

Now |r| in the scalar integral does not contain a square root:∫ 1

0

dx

ax+ b
=

[
ln(ax+ b)

a

]x=1

0
=

ln(a+ b)− ln(b)

a
.

The potential becomes

A(x) =
µ0I

4π
(b− a)

(
ln(− |b− a|+ |x− a|)− ln(|x− a|)

− |b− a|

)
=

µ0I

4π
(ln(|x− a|)− ln(− |b− a|+ |x− a|))

=
µ0I

4π
ln

( |x− a|
|x− a| − |b− a|

)
=
µ0I

4π
ln
|x− a|
|x− b|

.

If x is beyond the a end of the line, the coefficient a changes sign

A(x) =
µ0I

4π
(b− a)

(
ln(|b− a|+ |x− a|)− ln(|x− a|)

|b− a|

)
=

µ0I

4π
(ln(|b− a|+ |x− a|)− ln(|x− a|))

=
µ0I

4π
ln

( |b− a|+ |x− a|
|x− a|

)
=
µ0I

4π
ln
|x− b|
|x− a|

.

By considering which distance is larger in these two cases, it can be seen that the log is always
positive, so the formulae may be combined into

A(x) =
µ0I

4π

∣∣∣∣ln |x− b|
|x− a|

∣∣∣∣ .
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3 Derivation for Scalar Potential

3.1 General Formula

I can’t find a version of the Biot-Savart law that gives the scalar potential, so here is some
educated guesswork. First consider the magnetic field of an infinite wire in the z direction in
cylindrical polar coordinates B = µ0Iz

2π
1
reφ. If the potential satisfies ∇Φ = B then choosing

Φ = µ0Iz
2π φ works because the φ coordinate satisfies ∇φ = 1

reφ. This introduces a ‘cut sheet’ or
discontinuity at some φ value where it wraps by 2π; the cut sheet is a half-plane ending at the
wire in this case.

The website http://web.mit.edu/6.013 book/www/chapter8/8.3.html suggests that the
magnetic scalar potential of an arbitrary current loop is given by Φ = µ0I

4π Ω where Ω is the solid
angle subtended by the loop at the evaluation point. This seems dimensionally correct with
the previous result, since φ

2π has been replaced by Ω
4π , both of which are angular measures as a

fraction of all directions. The correspondence can be made more precise by considering the view
from a point near the infinite straight wire but turned into a loop at great distance around half
the horizontal ‘horizon’. The wire appears to go along half the horizon and then join in a great
circle at some other orientation (possibly diagonally above or below) depending on φ. The solid
angle of the sector seen within the complete loop is Ω = 2φ if φ = 0 is chosen to be when the
near and far wire appear coincident.

Converting the whole-loop formula into an integral that could be used with line elements
gives

Φ =
µ0

4π

∫
I dΩ

where dΩ is somehow the solid angle that can be ascribed to each infinitesimal bit of wire. One
way of counting the area of a curve in a plane is to pick an arbitrary point and integrate signed
areas swept out by the line elements subtended to that point. Here this has to be done on the
surface of a unit sphere, so pick an arbitrary unit vector α̂ and define 0 ≤ θ ≤ π to be the
observed angle from α̂ to the wire piece, with φ being the other spherical angular coordinate
‘around’ α̂. Some infinitesimal geometry and integrating area from 0 to θ gives

dΩ = (1− cos θ) dφ = (1− α̂ · r̂) dφ,

where r̂ = r/ |r|. To find dφ we use

dφ = ∇φ · dr =
1

rcyl
eφ · dr,

where rcyl is the old ‘r’ coordinate from the cylindrical polar coordinate system above. In terms
of our new vectors, rcyl = |r× α̂|, which measures radius in the plane perpendicular to α̂. A
suitable eφ can be found by normalising r× α̂, which perpendicular to both the axis α̂ and the
radial direction:

eφ =
r× α̂

|r× α̂|
⇒ dφ =

1

rcyl

r× α̂

|r× α̂|
· dr =

r× α̂

|r× α̂|2
· dr.

Putting this all together gives

Φ =
µ0

4π

∫
I(1− α̂ · r̂)

r× α̂

|r× α̂|2
· dr
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and the relation with the vector current I dr = I ds can be used to make it a normal line integral

Φ =
µ0

4π

∫
(1− α̂ · r̂)

(r× α̂) · I
|r× α̂|2

ds.

The identity |a× b|2 = |a|2 |b|2 − (a · b)2 allows a factor in the above to be simplified slightly:

1− α̂ · r̂
|r× α̂|2

=
1− α̂ · r̂

|r|2 − (r · α̂)2
=

1− α̂ · r̂
(|r|+ r · α̂)(|r| − r · α̂)

=
1− r̂ · α̂

(|r|+ r · α̂)(1− r̂ · α̂) |r|
=

1

(|r|+ r · α̂) |r|

so that

Φ =
µ0

4π

∫
(r× α̂) · I
|r| (|r|+ r · α̂)

ds.

Note the numerator is a scalar triple product so the order of the three vectors can be rotated.

3.2 Finite Wire Segment

As before, take the parameterisation

r = x− (a + λ(b− a)), ds = |b− a| dλ, I =
I(b− a)

|b− a|
,

and substitute into the integral. The last two are simpler and give

Φ(x) =
µ0I

4π

∫ 1

0

(r× α̂) · (b− a)

|r| (|r|+ r · α̂)
dλ.

The new terms are

r · α̂ = (x− a) · α̂ + λ((a− b) · α̂),

r× α̂ = (x− a)× α̂ + λ((a− b)× α̂)

⇒ (r× α̂) · (b− a) = ((x− a)× α̂) · (b− a).

The last cancellation (via the vector triple product) means that the numerator in the integral
is constant. The first formula means that r · α̂ is of the form dλ+ e, while |r| =

√
aλ2 + bλ+ c

as before. Thus

Φ(x) =
µ0I

4π
((x− a)× α̂) · (b− a)

∫ 1

0

1
√
ax2 + bx+ c

(√
ax2 + bx+ c+ dx+ e

) dx.
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