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1 Non-Moving Charges

The electric potential and field from a stationary charge g; placed at the origin are
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The force on another charge ¢ at position x is then
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where B = 0 because the non-moving charge ¢; produces no magnetic field.

2 Transforming the Four-Potential

The electromagnetic four-potential is A* = (%V,A), which transforms as a four-vector under
Lorentz transformations. Let primes (') denote the rest frame of charge ¢;. In this frame,
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If this charge is travelling at velocity vi = B¢, the (inverse) Lorentz transformation is

¥ BT ,
o= lvﬂ I+”/3‘215BT]M’

where = |B]| and v = (1 — Bz)_%. The same transformation gives A*(z#) from A™(a"), so
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The forward Lorentz transformation on x* = (ct, x) gives
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thus x' = —vctB + x + %(/@ - x)0.



3 Deriving the Fields

The field tensor is F'*¥ = gt AY — 0¥ A¥, where OF = (%(%, —V). The four-potential is a function
of X/, so first calculate the derivatives
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Next observe that
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and use the chain rule to get
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The fields and forces on the particles will be evaluated at ¢ = 0, so there are simpler expressions
for
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This means at t = 0,
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The electric field is )
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The  component of the magnetic field is
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This is true cyclically  — y — 2z — z, so

4 Evaluating the Force

Taking these results together, the force on charge ¢» at position x, travelling at velocity vs is
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where x’ = x + %ﬂl L(B1 - x)B1.

5 Check: using the E, B field transformation rules

In the rest frame of charge ¢1,
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and B’ = 0. The field transformation rules are
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where || and L denote the components parallel and perpendicular to v respectively.
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Using the formulae for x" in terms of x at ¢ = 0 from a previous section,
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For the magnetic field,
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where we have used v x x’ = v x x since v || 8 and x" and x only differ by a multiple of 3.
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