Force Between Two Moving, Non-Accelerating Charges

Stephen Brooks

October 28, 2024

1 Non-Moving Charges

The electric potential and field from a stationary charge q_1 placed at the origin are

$$V(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}|}$$
 and $\mathbf{E}(\mathbf{x}) = -\nabla V = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}|^3} \mathbf{x}.$

The force on another charge q_2 at position **x** is then

$$\mathbf{F}_2 = q_2(\mathbf{E} + \mathbf{v}_2 \times \mathbf{B}) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\mathbf{x}|^3} \mathbf{x},$$

where $\mathbf{B} = \mathbf{0}$ because the non-moving charge q_1 produces no magnetic field.

2 Transforming the Four-Potential

The electromagnetic four-potential is $A^{\mu}=(\frac{1}{c}V,\mathbf{A})$, which transforms as a four-vector under Lorentz transformations. Let primes (') denote the rest frame of charge q_1 . In this frame,

$$A'^{\mu}(x'^{\mu}) = \left(\frac{1}{4\pi\epsilon_0 c} \frac{q_1}{|\mathbf{x}'|}, \mathbf{0}\right) = \frac{1}{4\pi\epsilon_0 c} \frac{q_1}{|\mathbf{x}'|} (1, \mathbf{0}).$$

If this charge is travelling at velocity $\mathbf{v}_1 = \boldsymbol{\beta} c$, the (inverse) Lorentz transformation is

$$x^{\mu} = \left[\begin{array}{cc} \gamma & \gamma \boldsymbol{\beta}^T \\ \gamma \boldsymbol{\beta} & I + \frac{\gamma - 1}{\beta^2} \boldsymbol{\beta} \boldsymbol{\beta}^T \end{array} \right] x'^{\mu},$$

where $\beta = |\beta|$ and $\gamma = (1 - \beta^2)^{-\frac{1}{2}}$. The same transformation gives $A^{\mu}(x^{\mu})$ from $A'^{\mu}(x'^{\mu})$, so

$$A^{\mu}(x^{\mu}) = \frac{1}{4\pi\epsilon_0 c} \frac{q_1}{|\mathbf{x}'|} (\gamma, \gamma \boldsymbol{\beta}).$$

The forward Lorentz transformation on $x^{\mu} = (ct, \mathbf{x})$ gives

$$x'^{\mu} = \left(\gamma ct - \gamma \boldsymbol{\beta} \cdot \mathbf{x}, -\gamma ct \boldsymbol{\beta} + \mathbf{x} + \frac{\gamma - 1}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta}\right),$$

thus $\mathbf{x}' = -\gamma ct \boldsymbol{\beta} + \mathbf{x} + \frac{\gamma - 1}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta}$.

3 Deriving the Fields

The field tensor is $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$, where $\partial^{\mu} = (\frac{1}{c}\partial_{t}, -\nabla)$. The four-potential is a function of \mathbf{x}' , so first calculate the derivatives

$$\partial^{0} x^{\prime i} = -\gamma \beta^{i}$$

$$\partial^{j} x^{\prime i} = -\left(\delta_{ij} + \frac{\gamma - 1}{\beta^{2}} \beta^{i} \beta^{j}\right).$$

Next observe that

$$\partial^{\mu}|\mathbf{x}'| = \sum_{i} \frac{\partial |\mathbf{x}'|}{\partial x'^{i}} \partial^{\mu} x'^{i} = \sum_{i} \frac{x'^{i}}{|\mathbf{x}'|} \partial^{\mu} x'^{i}$$

and use the chain rule to get

$$\partial^{\mu} A^{\nu} = \frac{1}{4\pi\epsilon_{0}c} \frac{-q_{1}}{|\mathbf{x}'|^{2}} (\gamma, \gamma\boldsymbol{\beta})^{\nu} \sum_{i} \frac{x'^{i}}{|\mathbf{x}'|} \partial^{\mu} x'^{i}$$

$$= \frac{1}{4\pi\epsilon_{0}c} \frac{-q_{1}}{|\mathbf{x}'|^{3}} (\gamma, \gamma\boldsymbol{\beta})^{\nu} \sum_{i} x'^{i} \left(-\gamma\beta^{i}, -\left(\mathbf{e}_{i} + \frac{\gamma - 1}{\beta^{2}}\beta^{i}\boldsymbol{\beta}\right)\right)^{\mu}$$

$$= \frac{1}{4\pi\epsilon_{0}c} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma, \gamma\boldsymbol{\beta})^{\nu} \left(\gamma\mathbf{x}' \cdot \boldsymbol{\beta}, \mathbf{x}' + \frac{\gamma - 1}{\beta^{2}} (\mathbf{x}' \cdot \boldsymbol{\beta})\boldsymbol{\beta}\right)^{\mu}.$$

The fields and forces on the particles will be evaluated at t = 0, so there are simpler expressions for

$$\mathbf{x}' = \mathbf{x} + \frac{\gamma - 1}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta},$$

$$\mathbf{x}' \cdot \boldsymbol{\beta} = \mathbf{x} \cdot \boldsymbol{\beta} + (\gamma - 1)(\boldsymbol{\beta} \cdot \mathbf{x}) = \gamma \boldsymbol{\beta} \cdot \mathbf{x},$$

$$\mathbf{x}' + \frac{\gamma - 1}{\beta^2} (\mathbf{x}' \cdot \boldsymbol{\beta}) \boldsymbol{\beta} = \mathbf{x} + \frac{\gamma - 1}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta} + \frac{\gamma - 1}{\beta^2} (\gamma \boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta}$$

$$= \mathbf{x} + \frac{(\gamma - 1)(\gamma + 1)}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta} = \mathbf{x} + \gamma^2 (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta}.$$

This means at t = 0,

$$\partial^{\mu} A^{\nu} = \frac{1}{4\pi\epsilon_{0}c} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma, \gamma\boldsymbol{\beta})^{\nu} (\gamma^{2}\boldsymbol{\beta} \cdot \mathbf{x}, \mathbf{x} + \gamma^{2}(\boldsymbol{\beta} \cdot \mathbf{x})\boldsymbol{\beta})^{\mu}.$$

The electric field is

$$\frac{1}{c}E^{i} = F^{i0} = \partial^{i}A^{0} - \partial^{0}A^{i}$$

$$\Rightarrow \mathbf{E} = \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma(\mathbf{x} + \gamma^{2}(\boldsymbol{\beta} \cdot \mathbf{x})\boldsymbol{\beta}) - \gamma\boldsymbol{\beta}(\gamma^{2}\boldsymbol{\beta} \cdot \mathbf{x}))$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma\mathbf{x} + \gamma^{3}(\boldsymbol{\beta} \cdot \mathbf{x})\boldsymbol{\beta} - \gamma^{3}(\boldsymbol{\beta} \cdot \mathbf{x})\boldsymbol{\beta})$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}}{|\mathbf{x}'|^{3}} \gamma\mathbf{x}.$$

The x component of the magnetic field is

$$B^x = F^{zy} = \partial^z A^y - \partial^y A^z$$

$$\Rightarrow B^{x} = \frac{1}{4\pi\epsilon_{0}c} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma \beta^{y} (z + \gamma^{2}(\boldsymbol{\beta} \cdot \mathbf{x})\beta^{z}) - \gamma \beta^{z} (y + \gamma^{2}(\boldsymbol{\beta} \cdot \mathbf{x})\beta^{y}))$$
$$= \frac{1}{4\pi\epsilon_{0}c} \frac{q_{1}}{|\mathbf{x}'|^{3}} (\gamma \beta^{y} z - \gamma \beta^{z} y).$$

This is true cyclically $x \to y \to z \to x$, so

$$\mathbf{B} = \frac{1}{4\pi\epsilon_0 c} \frac{q_1}{|\mathbf{x}'|^3} \gamma \boldsymbol{\beta} \times \mathbf{x}.$$

4 Evaluating the Force

Taking these results together, the force on charge q_2 at position \mathbf{x} , travelling at velocity \mathbf{v}_2 is

$$\mathbf{F}_{2} = q_{2}(\mathbf{E} + \mathbf{v}_{2} \times \mathbf{B})$$

$$= \frac{1}{4\pi\epsilon_{0}c} \frac{q_{1}q_{2}}{|\mathbf{x}'|^{3}} (c\gamma_{1}\mathbf{x} + \mathbf{v}_{2} \times (\gamma_{1}\boldsymbol{\beta}_{1} \times \mathbf{x}))$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}q_{2}}{|\mathbf{x}'|^{3}} \gamma_{1}(\mathbf{x} + \boldsymbol{\beta}_{2} \times (\boldsymbol{\beta}_{1} \times \mathbf{x}))$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}q_{2}}{|\mathbf{x}'|^{3}} \gamma_{1}(\mathbf{x} + (\boldsymbol{\beta}_{2} \cdot \mathbf{x})\boldsymbol{\beta}_{1} - (\boldsymbol{\beta}_{2} \cdot \boldsymbol{\beta}_{1})\mathbf{x}),$$

where $\mathbf{x}' = \mathbf{x} + \frac{\gamma_1 - 1}{\beta_1^2} (\boldsymbol{\beta}_1 \cdot \mathbf{x}) \boldsymbol{\beta}_1$.

5 Check: using the E, B field transformation rules

In the rest frame of charge q_1 ,

$$\mathbf{E}'(\mathbf{x}') = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \mathbf{x}'$$

and $\mathbf{B}' = \mathbf{0}$. The field transformation rules are

$$\begin{split} \mathbf{E}_{\parallel} &= \mathbf{E}'_{\parallel}, \\ \mathbf{B}_{\parallel} &= \mathbf{B}'_{\parallel}, \\ \mathbf{E}_{\perp} &= \gamma (\mathbf{E}'_{\perp} - \mathbf{v} \times \mathbf{B}'), \\ \mathbf{B}_{\perp} &= \gamma \left(\mathbf{B}'_{\perp} + \frac{1}{c^2} \mathbf{v} \times \mathbf{E}' \right), \end{split}$$

where \parallel and \perp denote the components parallel and perpendicular to \mathbf{v} respectively.

$$\mathbf{E} = \mathbf{E}_{\parallel} + \mathbf{E}_{\perp} = \mathbf{E}'_{\parallel} + \gamma \mathbf{E}'_{\perp}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \left(\frac{1}{\beta^2} (\mathbf{x}' \cdot \boldsymbol{\beta}) \boldsymbol{\beta} + \gamma \left(\mathbf{x}' - \frac{1}{\beta^2} (\mathbf{x}' \cdot \boldsymbol{\beta}) \boldsymbol{\beta} \right) \right)$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \left(\gamma \mathbf{x}' - \frac{\gamma - 1}{\beta^2} (\mathbf{x}' \cdot \boldsymbol{\beta}) \boldsymbol{\beta} \right).$$

Using the formulae for \mathbf{x}' in terms of \mathbf{x} at t=0 from a previous section,

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \left(\gamma \left(\mathbf{x} + \frac{\gamma - 1}{\beta^2} (\boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta} \right) - \frac{\gamma - 1}{\beta^2} (\gamma \boldsymbol{\beta} \cdot \mathbf{x}) \boldsymbol{\beta} \right)$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \gamma \mathbf{x}.$$

For the magnetic field,

$$\mathbf{B} = \mathbf{B}_{\parallel} + \mathbf{B}_{\perp} = 0 + \gamma \frac{1}{c^2} \mathbf{v} \times \mathbf{E}'$$

$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{|\mathbf{x}'|^3} \gamma \frac{1}{c^2} \mathbf{v} \times \mathbf{x}'$$

$$= \frac{1}{4\pi\epsilon_0 c} \frac{q_1}{|\mathbf{x}'|^3} \gamma \boldsymbol{\beta} \times \mathbf{x},$$

where we have used $\mathbf{v} \times \mathbf{x}' = \mathbf{v} \times \mathbf{x}$ since $\mathbf{v} \parallel \boldsymbol{\beta}$ and \mathbf{x}' and \mathbf{x} only differ by a multiple of $\boldsymbol{\beta}$.