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1 Turning an End Field on its Side

A previous note derived the following expression for a magnetic field that is order n rotationally
symmetric about the z axis:
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and f(z) is proportional to the strength variation of the 2n-pole along the z axis. 1 = 0 gives
normal orientation and ¢ = 7 the skew orientation.

The idea of this note is to reinterpret (z,y) as the plane of a ring with superperiodicity
n, making z the ‘vertical’ or out-of-plane axis. The vertical B, component is oscillatory but
can be supplemented by a constant field in that direction, producing something similar to ‘field
flutter’ in cyclotrons, including the alternating gradients that keep the beam stable. Normally
it is desired that the z = 0 ring plane only has field perpendicular to it, meaning B, = B, = 0
there. This can be guaranteed by making f(z) an odd function, so that f(?9)(0) = 0 for all j.

2 f with Order 1

The simplest case with f(z) an odd polynomial is f(z) = az. As f” and all higher derivatives
are zero, only the j = 0 term is nonzero. Note that C,g = 1 and then
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The peak strength of the dipole field on the midplane is ar™ and the peak gradient is anr™ 1.

This field model has the advantage of being very simple. It is also the field of a scaling
FFA with field index & = n and a cell with sinusoidally-varying focussing (not a very efficient
machine as the reverse bending nearly equals the bending). If more complex cells are desired,
terms replacing n with 2n, 3n, etc. can add longitudinal harmonics to the periodic cell.



One disadvantage of this field model for larger beams is that it also has a sextupole dde of
peak strength an(n — 1)r"~2 that leads to nonlinear beam transport.

3 f with Order 3

The second simplest case is f(z) = az + bz3. Now the j = 0,1 terms are the only nonzero ones.
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The peak strength of the dipole field on the midplane is now ar™— 4(7?11) "2, The peak gradient

is anr™—t — ?)zb((r?i%) r"*1 and the peak sextupole ddBQZ is an(n —1)r"2 — WT . To make the
sextupole zero at radius r = R, it is required that
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This makes the peak dipole field at radius » = R equal to
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and the peak gradient at r = R equal to
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4 General Case

Higher order polynomials may be useful for cancelling octupole and higher nonlinearities. For
odd f(z), the field on the midplane is
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The peak i*? radial derivative field is then
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If f(2) = S5 agr122#! then fZ7HD(0) = (25 +1)lag;41 for j < K and zero otherwise, giving
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Typically a radius » = R will be chosen at which several (K + 1) of the Bi?aeak are specified (e.g.
nonzero gradient ¢ = 1, some higher multipoles zero). The values of R"as;41 can be obtained

by solving the linear system
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The factor R™ can be too large for the computer precision, so is included in the coefficient value.
The field can then be calculated with the rescaled formula
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