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1 Introduction

Standard numerical integrators work well for many-body Coulomb repulsion problems when the
timestep is much shorter than the timescale of relative position changes. However, for ‘hard’
collisions in which two particles have a near miss and exchange a lot of momentum within one
timestep, they understandably struggle. This note proposes using the exact solution of Keplerian
two-body orbits (usually hyperbolic) to calculate the momentum exchange with other particles:
either a selection of the ‘closest’ ones or all of them.

2 Pairwise Collision in Central Frame

Take the masses of two particles to be m 2 and their charges to be g1 2. Adopt the frame where

the total momentum p = myvi + move = 0 and also the centre of mass mixy + moxs = 0 is
at the origin. From this, it is always true that xs = —%xl and x; — X9 = %gmxl. Similar

relations hold for vi, meaning the problem is restricted to a two dimensional subspace spanned
by x; and vy. The radial Coulomb force on the first particle is
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Defining r = |x/|, this is a central force of magnitude
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3 Binet Equation

The trajectory shape can be conveniently found from the Binet equation. Defining v = 1/r and
using polar coordinates, it states, for a central force F',
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where h = 726 is a conserved angular-momentum-like quantity. For this problem, F' = ku?
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for some constants A, B. The origin for 6 is free to choose at this point, so it simplifies the
calculation to choose it such that B = 0 and A > 0. The solution is now

u(f) = Acosf + C

where C' = —# is a constant that is negative for repelling particles with g;g2 > 0 and positive
for attracting particles with ¢qi1q2 < 0.

4 Initial Conditions

Call the value of 6 corresponding to the initial condition 6y, so that
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where in this section x; and v; are evaluated at the initial condition.

The first derivative satisfies
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Initially we have 7 = vy - x1/|x1] and 0 = |x; x vi|/|x1]2, so
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These initial conditions also determine
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which is a conserved quantity proportional to angular momentum. Using the solution for u(6)

gives
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Taking the sum of squares gives
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Taking the ratio gives
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5 Time Dependence and the Eccentric Anomaly

As h = r20 is a constant found in the previous section, 6= % = hu?. The equation to solve is

de
— = hu? = h(Acosb + C)°.
dt
Kepler’s eccentric anomaly E' is defined via
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for some eccentricity e that will be found later. Terms in {brackets} are used for the hyperbolic
form when |e| > 1. The sign of sin{h} £ is defined to be the same as sinf. The variable of the
differential equation can be changed to E via the chain rule:
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Next, sin{h} F needs to be evaluated:
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Substituting this back in,
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Setting e = % gives

E
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Note that this e has the same sign as C, so is the usual definition of eccentricity for attracting
particles, but negative for repelling particles.



To express % back in terms of E, note that
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Therefore
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Kepler’s equation suggests an implicit solution of the form
gt = E —esin{h} E
for some constant q. Differentiating both sides with respect to ¢ gives
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which is indeed a constant. The sign o of 1 — ecos{h} E is

e 1 for elliptic orbits (0 < e < 1),
e —1 for hyperbolic attractive orbits (e > 1, C' > 0) and

e 1 for hyperbolic repulsive orbits (e < —1, C' < 0).

6 Time Step

With A and 8y known, calculate e = % and proceed via

e + cos by
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to find the initial time ¢y in Kepler’s equation.

cos{h} Ey = gto = Ey — esin{h} Ey

Suppose the position is required at ¢ = tg + dt for some time step §t. A solution of gt =
E — esin{h} F' is needed. This does not have a closed-form solution but Newton-Raphson
iterations exist (see Appendices). Then
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u(f) = Acosf + C.

cos = sin{h} F

and

A convenient way of handling the frames of reference is to rotate x; by angle 8 — 6y about
the x; x vy axis and then scale by r/rg = u(6p)/u(6).

To find the velocity, it is easier to use the known differential equations 6 = hu? and u/() =

—Asin @ to get
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