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1 Introduction

Standard numerical integrators work well for many-body Coulomb repulsion problems when the
timestep is much shorter than the timescale of relative position changes. However, for ‘hard’
collisions in which two particles have a near miss and exchange a lot of momentum within one
timestep, they understandably struggle. This note proposes using the exact solution of Keplerian
two-body orbits (usually hyperbolic) to calculate the momentum exchange with other particles:
either a selection of the ‘closest’ ones or all of them.

2 Pairwise Collision in Central Frame

Take the masses of two particles to be m1,2 and their charges to be q1,2. Adopt the frame where
the total momentum p = m1v1 + m2v2 = 0 and also the centre of mass m1x1 + m2x2 = 0 is
at the origin. From this, it is always true that x2 = −m1

m2
x1 and x1 − x2 = m1+m2

m2
x1. Similar

relations hold for v1, meaning the problem is restricted to a two dimensional subspace spanned
by x1 and v1. The radial Coulomb force on the first particle is

F1(|x1|) =
q1q2
4πϵ0

x1 − x2

|x1 − x2|3
=

q1q2
4πϵ0

m1+m2
m2

x1

(m1+m2
m2

)3|x1|3
=

q1q2
4πϵ0

(
m2

m1 +m2

)2 x1

|x1|3
.

Defining r = |x1|, this is a central force of magnitude

F1(r) =
q1q2
4πϵ0

(
m2

m1 +m2

)2 1

r2
.

3 Binet Equation

The trajectory shape can be conveniently found from the Binet equation. Defining u = 1/r and
using polar coordinates, it states, for a central force F ,

F = −mh2u2
(
d2u

dθ2
+ u

)
,

where h = r2θ̇ is a conserved angular-momentum-like quantity. For this problem, F = ku2

where k = q1q2
4πϵ0

( m2
m1+m2

)2. Thus,

ku2 = −m1h
2u2

(
d2u

dθ2
+ u

)
⇒ d2u

dθ2
+ u = − k

m1h2
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⇒ u(θ) = A cos θ +B sin θ − k

m1h2

for some constants A, B. The origin for θ is free to choose at this point, so it simplifies the
calculation to choose it such that B = 0 and A ≥ 0. The solution is now

u(θ) = A cos θ + C

where C = − k
m1h2 is a constant that is negative for repelling particles with q1q2 > 0 and positive

for attracting particles with q1q2 < 0.

4 Initial Conditions

Call the value of θ corresponding to the initial condition θ0, so that

u(θ0) =
1

|x1|
= A cos θ0 + C,

where in this section x1 and v1 are evaluated at the initial condition.

The first derivative satisfies

u′ =
du

dθ
=

du

dr

dr

dt

dt

dθ
=

−1

r2
ṙ
1

θ̇
.

Initially we have ṙ = v1 · x1/|x1| and θ̇ = |x1 × v1|/|x1|2, so

u′(θ0) =
−1

|x1|2
v1 · x1

|x1|
|x1|2

|x1 × v1|
=

−x1 · v1

|x1||x1 × v1|
.

These initial conditions also determine

h = r2θ̇ = |x1|2
|x1 × v1|
|x1|2

= |x1 × v1|,

which is a conserved quantity proportional to angular momentum. Using the solution for u(θ)
gives

u′(θ0) =
−x1 · v1

|x1|h
= −A sin θ0.

Taking the sum of squares gives

(A cos θ0)
2 + (−A sin θ0)

2 = A2 =

(
1

|x1|
− C

)2

+

(
−x1 · v1

|x1|h

)2

⇒ A =
1

|x1|

√
(1− |x1|C)2 +

(x1 · v1

h

)2
.

Taking the ratio gives

A sin θ0
A cos θ0

= tan θ0 =

x1·v1
|x1|h
1

|x1| − C
=

x1 · v1

(1− |x1|C)h
.

But also

cos θ0 =

1
|x1| − C

A
=

1− |x1|C
|x1|A

is useful.
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5 Time Dependence and the Eccentric Anomaly

As h = r2θ̇ is a constant found in the previous section, θ̇ = dθ
dt = hu2. The equation to solve is

dθ

dt
= hu2 = h(A cos θ + C)2.

Kepler’s eccentric anomaly E is defined via

cos{h}E =
e+ cos θ

1 + e cos θ

for some eccentricity e that will be found later. Terms in {brackets} are used for the hyperbolic
form when |e| > 1. The sign of sin{h}E is defined to be the same as sin θ. The variable of the
differential equation can be changed to E via the chain rule:

dE

dt
=

dE

d cos{h}E
d cos{h}E

dt

=
{−}1

− sin{h}E

(
1

1 + e cos θ

d cos θ

dt
+ (e+ cos θ)

−1

(1 + e cos θ)2
e
d cos θ

dt

)
=

{−}1
− sin{h}E

(
1

1 + e cos θ
+

−e(e+ cos θ)

(1 + e cos θ)2

)
d cos θ

dt

=
{−}1

− sin{h}E
1 + e cos θ − e2 − e cos θ

(1 + e cos θ)2
(− sin θ)h(A cos θ + C)2

=
{−} sin θ
sin{h}E

(1− e2)h
(A cos θ + C)2

(1 + e cos θ)2

=
sin θ

sin{h}E
|1− e2|h(A cos θ + C)2

(1 + e cos θ)2
.

Next, sin{h}E needs to be evaluated:

sin{h}E = ±
√
{−}(1− cos{h}2E) = ±

√
{−}

(
1− (e+ cos θ)2

(1 + e cos θ)2

)

= ±

√
{−}

(
1 + 2e cos θ + e2 cos2 θ − e2 − 2e cos θ − cos2 θ

(1 + e cos θ)2

)

= ±
√
{−}(1− e2 − cos2 θ + e2 cos2 θ)

1 + e cos θ
= ±

√
|1− e2|(1− cos2 θ)

1 + e cos θ
=

√
|1− e2| sin θ
|1 + e cos θ|

.

Substituting this back in,

dE

dt
=

sin θ

sin{h}E
|1− e2|h(A cos θ + C)2

(1 + e cos θ)2
=

|1 + e cos θ|√
|1− e2|

|1− e2|h(A cos θ + C)2

(1 + e cos θ)2

=
√
|1− e2|h(A cos θ + C)2

|1 + e cos θ|
=

√
|1− e2|hC2 (1 +

A
C cos θ)2

|1 + e cos θ|
.

Setting e = A
C gives

dE

dt
=

√
|1− e2|hC2|1 + e cos θ|.

Note that this e has the same sign as C, so is the usual definition of eccentricity for attracting
particles, but negative for repelling particles.
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To express dE
dt back in terms of E, note that

cos{h}E − 1

e
=

e− 1
e

1 + e cos θ

⇒ 1 + e cos θ =
e− 1

e

cos{h}E − 1
e

=
e2 − 1

e cos{h}E − 1
.

Therefore
dE

dt
=

√
|1− e2|hC2 |1− e2|

|1− e cos{h}E|
=

|1− e2|3/2hC2

|1− e cos{h}E|
.

Kepler’s equation suggests an implicit solution of the form

qt = E − e sin{h}E

for some constant q. Differentiating both sides with respect to t gives

q =
dE

dt
− e cos{h}E dE

dt
= (1− e cos{h}E)

dE

dt

and substituting the dE
dt found above gives

q = (1− e cos{h}E)
|1− e2|3/2hC2

|1− e cos{h}E|
= σ|1− e2|3/2hC2,

which is indeed a constant. The sign σ of 1− e cos{h}E is

� 1 for elliptic orbits (0 ≤ e < 1),

� −1 for hyperbolic attractive orbits (e > 1, C > 0) and

� 1 for hyperbolic repulsive orbits (e < −1, C < 0).

6 Time Step

With A and θ0 known, calculate e = A
C and proceed via

cos{h}E0 =
e+ cos θ0
1 + e cos θ0

, qt0 = E0 − e sin{h}E0

to find the initial time t0 in Kepler’s equation.

Suppose the position is required at t = t0 + δt for some time step δt. A solution of qt =
E − e sin{h}E is needed. This does not have a closed-form solution but Newton–Raphson
iterations exist (see Appendices). Then

cos θ =
e− cos{h}E
e cos{h}E − 1

, sin θ =
|1 + e cos θ|√

|1− e2|
sin{h}E

and
u(θ) = A cos θ + C.

A convenient way of handling the frames of reference is to rotate x1 by angle θ − θ0 about
the x1 × v1 axis and then scale by r/r0 = u(θ0)/u(θ).

To find the velocity, it is easier to use the known differential equations θ̇ = hu2 and u′(θ) =
−A sin θ to get

dr

dt
=

dr

du

du

dθ

dθ

dt
=

−1

u2
(−A sin θ)hu2 = Ah sin θ.

4


	Introduction
	Pairwise Collision in Central Frame
	Binet Equation
	Initial Conditions
	Time Dependence and the Eccentric Anomaly
	Time Step

